
Chapter 1: Introduction
1.1 Categorical Response Data

I Methods for response variable (a.k.a. outcome variable, dependent
variable) Y whose measurement scale is a set of categories.

I Explanatory variables (a.k.a. predictors, covariates, independent
variables) may be categorical or continuous or both. Generically
denoted x1, x2, etc.

Example

Y = vote in election (Dem, Rep, Indep)

x’s : income,︸ ︷︷ ︸
continuous

gender, race,︸ ︷︷ ︸
categorical

education︸ ︷︷ ︸
?
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Two Types of Categorical Variables

Nominal: unordered categories

Ordinal: ordered categories

Example

Nominal I transport to work (car, bus, bicycle, walk, other)

I favorite music (rock, hiphop, pop, classical, jazz,
country, folk)

Ordinal I patient condition (excellent, good, fair, poor)

I government spending (too high, about right, too low)

We pay special attention to

Binary variables: success or failure

for which nominal-ordinal distinction is unimportant.
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1.2 Probability Distributions for Categorical Data

For categorical response data, the binomial distribution (and its
generalization, the multinomial distribution) plays a role similar to that of
the normal distribution for continuous responses.

Binomial Distribution

I n Bernoulli trials: two possible outcomes for each trial (success,
failure)

I π = Pr(success), 1 − π = Pr(failure), for each trial

I trials are independent

I Y = number of successes out of n trials

Y has a binomial distribution

When each trial has more than 2 possible outcomes, the joint
distribution of the counts of outcomes in the various categories is a
multinomial distribution (see text).
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Probability Function of Binomial Distribution

P(y) = Pr(Y = y)

=
n!

y!(n− y)!
πy(1 − π)n−y, y = 0, 1, 2, . . . ,n

where “y factorial” is given by

y! = y(y− 1)(y− 2) · · · 1 with 0! = 1
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Example

Cola Preference (Coke, Pepsi)

Suppose π = Pr(Coke) = 0.6.

Sample n = 3 tasters; let y = number preferring Coke among them.

P(y) =
3!

y!(3 − y)!
(.6)y(.4)3−y

P(0) =
3!

0!3!
(.6)0(.4)3 = (.4)3 = 0.064

P(1) =
3!

1!2!
(.6)1(.4)2 = 3(.6)(.4)2 = 0.288

y P(y)

0 0.064
1 0.288
2 0.432
3 0.216

1
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R Code

> dbinom(0, 3, .6)

[1] 0.064

> dbinom(1, 3, .6)

[1] 0.288

> dbinom(0:3, 3, .6)

[1] 0.064 0.288 0.432 0.216

> cbind(0:3, dbinom(0:3, 3, .6))

[,1] [,2]

[1,] 0 0.064

[2,] 1 0.288

[3,] 2 0.432

[4,] 3 0.216
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> plot(0:3, dbinom(0:3, 3, .6), type = "h",

xlab = "y", ylab = "P(y)")
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Facts About the Binomial Distribution

I E(Y) = nπ

I σ2 = Var(Y) = nπ(1 − π), σ =
√
nπ(1 − π)

I p =
Y

n
= proportion of success (also denoted π̂)

E(p) = E

(
Y

n

)
= π (mean of p is π)

σ(p) =

√
π(1 − π)

n
(std error of p)

I Binomial distribution can be approximated by a normal distribution
when n is large (n ·min{π, 1 − π} > 5).
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1.3 Statistical Inference for a Proportion
Parameters are often estimated using maximum likelihood (ML).

Definition

The likelihood function is the probability of the observed data,
expressed as a function of the parameter value.

Example

Binomial, n = 3, observe y = 1. Then

P(1) =
3!

1!2!
π1(1 − π)2 = 3π(1 − π)2 =: `(π)

is the likelihood function, defined for π between 0 and 1.

π = 0.1 : `(0.1) = 3(.1)(.9)2 = 0.243

π = 0.4 : `(0.4) = 3(.4)(.6)2 = 0.432

π = 0.6 : `(0.6) = 3(.6)(.4)2 = 0.288
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Plot of Binomial Likelihood Function when n = 3, y = 1
> curve(dbinom(1,3,x), xlim = c(0,1))
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Definition

The maximum likelihood estimate (MLE) is the parameter value at which
the likelihood function is maximized.

Example

`(π) = 3π(1 − π)2 is maximized at π̂ = 1/3 = 0.333

I.e., y = 1 success in n = 3 trials is more likely for π = 1/3 than for any
other value of π.
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Plot of Binomial Likelihood Function when n = 3, y = 1
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Plot of Binomial Likelihood Function when n = 3, y = 0
Naturally, the likelihood function and the MLE depend on the data. If we
observe y = 0 successes in n = 3 trials, then the MLE is π̂ = 0

3 = 0.
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Plot of Binomial Likelihood Function when n = 3, y = 2
If we observe y = 2 successes in n = 3 trials, then MLE is
π̂ = 2

3 = 0.667.
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Plot of Binomial Likelihood Function when n = 3, y = 3

If we observe y = 3 successes in n = 3 trials, then MLE is π̂ = 3
3 = 1.
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Facts About MLEs

I For binomial, MLE is
π̂ =

y

n
= p = sample proportion of successes.

I If y1,y2, . . . ,yn are independent observations from a fixed normal
distribution, then the MLE of the underlying mean µ is µ̂ = y
(sample mean). Same is true for Poisson distribution.

I In ordinary linear regression with Y ∼ normal, the least squares
estimators of the regression coefficients are also the MLEs.

I For large sample size n, MLEs are optimal (no other estimator has
smaller mean squared error: variance plus squared bias). This is
true in fairly broad generality.

I For large n, the sampling distribution of the MLE is approximately
normal. Again, this is true in fairly broad generality.
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ML Inference for a Binomial Success Probability

MLE of π is π̂ = p =
y

n
.

Recall E(p) = π, σ(p) =

√
π(1 − π)

n
.

I Note that p is unbiased (E(p) = π) and that σ(p) ↓ 0 as n ↑∞.
This implies that p is a consistent estimator of π, i.e., p→ π in
probability.

MLEs are generally consistent.

I p is a sample mean for 0-1 data, so by the Central Limit Theorem,
the sampling distribution of p is approximately normal for large n.

Again, this is generally true for MLEs.
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Significance Test for Binomial Parameter

H0 : π = π0 vs Ha : π 6= π0 (or 1-sided alternative)

If H0 is true, then the sampling distribution of the test statistic

z =
p− π0

σ(p)
=

p− π0√
π0(1 − π0)

n

is approximately N(0, 1) for large samples: this is the reference
distribution. Note that the null SE of p was used to compute z.

Definition

p-value = probability of results at least as extreme as observed

(if null were true)

For the two-sided alternative hypothesis (π 6= π0), use the two-tailed
probability Pr(|Z| > |z|).
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Confidence Interval for Binomial Parameter

Definition

The Wald CI for a parameter θ is θ̂± zα/2 SE, where SE is the
estimated standard error of θ̂.

For a 95% CI, α = 5% = .05 and zα/2 = z.025 = 1.96, so take ±1.96
standard errors.

Example

θ = π : MLE is θ̂ = π̂ = p

σ(p) =

√
π(1 − π)

n
estimated by SE =

√
p(1 − p)

n

95% CI for π : p± 1.96

√
p(1 − p)

n
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Example (in which the Wald interval collapses)

Estimate π, the population proportion of vegetarians.

For n = 20, suppose we observe y = 0.

p =
0
20

= 0

95% CI: 0± 1.96

√
0× 1

20
= 0± 0 = (0, 0)

21



Remarks

I Wald intervals can perform poorly in categorical data analysis
unless n is quite large.

I Wald CI for π collapses if p = 0 or 1.

I The actual coverage probability of the Wald interval can be much
less than 0.95 when π is close to 0 or 1.

I Wald 95% CI is the set of π0 values with p-value > .05 when testing

H0 : π = π0 vs Ha : π 6= π0

using the test statistic

z =
p− π0√
p(1 − p)

n

(denominator is estimated SE)
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Definition

The score test and the score CI use null hypothesis value of the SE.

E.g., score 95% CI is the set of π0 values for which p-value > .05 when
testing

H0 : π = π0 vs Ha : π 6= π0

using the test statistic

z =
p− π0√
π0(1 − π0)

n

(denom is SE under H0; known, not estimated)
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Example

π = probability of being vegetarian.

n = 20, y = 0, p =
0
20

= 0

What values of π0 satisfy

|0 − π0|√
π0(1 − π0)

20

< 1.96 i.e., |0 − π0| < 1.96

√
π0(1 − π0)

20

Get equality at π0 = 0 and π0 = .16 (solve quadratic equation).
Inequality is satisfied for all values of π0 between 0 and .16.

So 95% score CI for π is (0, .16). More sensible than Wald CI.
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I When solving the quadratic, can show that midpoint of 95% score
CI is

y+ 1.962/2
n+ 1.962 ≈

y+ 2
n+ 4

.

I Can improve Wald CI p± 1.96
√
p(1−p)
n by adding 2 successes

and 2 failures before computing p (“Agresti-Coull” method).

I For inference about proportions, score tests and CIs tend to
perform better than Wald, in that the actual error rates are closer to
their nominal levels.

I Another good approach uses the likelihood function directly. The CI
it is the set of values of π0 not rejected by the likelihood ratio test,
i.e., the set of values of π for which `(π) is close to `(π̂).

I For very small n, do inference using the exact binomial sampling
distribution of the data, instead of the normal approximation.
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R Functions for Simple Binomial Tests and CIs
prop.test computes score test and CI.

I Default test is for H0 : π = 0.5 vs Ha : π 6= 0.5

I Uses continuity correction by default to improve normal approx.

> prop.test(0,20)

1-sample proportions test with continuity

correction

data: 0 out of 20, null probability 0.5

X-squared = 18.05, df = 1, p-value = 2.152e-05

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.00000 0.20045

sample estimates:

p

0
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prop.test without continuity correction.

> prop.test(0, 20, correct=FALSE)

1-sample proportions test without continuity

correction

data: 0 out of 20, null probability 0.5

X-squared = 20, df = 1, p-value = 7.744e-06

alternative hypothesis: true p is not equal to 0.5

95 percent confidence interval:

0.00000 0.16113

sample estimates:

p

0

27



binom.test does exact test and corresponding exact CI.

I Default test is for H0 : π = 0.5 vs Ha : π 6= 0.5

> binom.test(0,20)

Exact binomial test

data: 0 and 20

number of successes = 0, number of trials = 20,

p-value = 1.907e-06

alternative hypothesis: true probability of success is not equal to 0.5

95 percent confidence interval:

0.00000 0.16843

sample estimates:

probability of success

0
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2. Contingency Tables
Two-Way Contingency Tables

Contingency table: cells contain counts of outcomes.

A two-way table with I rows and J columns is called an I× J table.

Physicians’ Health Study (5 years)

Myocardial Infarction (MI) = heart attack. 2× 2 table.

Group MI
Y N

Placebo 189 10845
Aspirin 104 10933

With row totals:
Group MI

Y N Total
Placebo 189 10845 11034
Aspirin 104 10933 11037
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Conditional Distributions
A conditional distribution of Y given X refers to the probability
distribution of Y when we restrict attention to a fixed level of X.

Physicians’ Health Study (ctd)

Group MI
Y N Total

Placebo 0.017 0.983 1
Aspirin 0.009 0.991 1

Sample (or estimated) conditional probs for placebo group are

189
11, 034

= .017,
10, 845
11, 034

= .983

Natural way to look at data when

Y = response variable (e.g., heart attack: yes/no)

X = explanatory variable (e.g., group: aspirin/placebo)
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Diagnostic Disease Tests

Y = outcome of test: 1 = positive 2 = negative

X = actual condition: 1 = diseased 2 = not diseased

Y

1 2

X
1
2

sensitivity = Pr(Y = 1|X = 1)

specificity = Pr(Y = 2|X = 2)

If you get a positive result, more relevant to you is Pr(X = 1|Y = 1). If
disease is relatively rare, this may be low even if sensitivity and
specificity are high (see pp. 23–24 of text for an example).
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Joint and Marginal Distributions
What if X and Y are both response variables? Let

πij = Pr(X = i, Y = j), i = 1, . . . , I, j = 1, . . . , J

πi+ = Pr(X = i) =
∑
j

πij = πi1 + · · ·+ πiJ

π+j = Pr(Y = j) =
∑
i

πij = π1j + · · ·+ πIj

{πij} forms the joint distribution of X and Y.
{πi+} forms the marginal distribution of X.
{π+j} forms the marginal distribution of Y.

2× 2 example:

Y

1 2

X
1 π11 π12 π1+

2 π21 π22 π2+

π+1 π+2 1
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Sample cell counts: {nij}
Cell proportions: {pij}

pij =
nij

n
where n =

∑
i

∑
j

nij

2× 2 example:

Y

1 2

X
1 n11 n12 n1+

2 n21 n22 n2+

n+1 n+2 n
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Independence

Definition (Statistical Independence)

X and Y are statistically independent if the true conditional distribution
of Y is the same at each level of X.

2× 2 example. Rows represent conditional distributions of Y given X.

Y

1 2

X
1 .01 .99 1
2 .01 .99 1
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Fact: X and Y are independent if and only if

Pr(X = i, Y = j) = Pr(X = i) · Pr(Y = j) for all i and j,

i.e., πij = πi+π+j for all i and j.

2× 2 example:

Y

1 2

X
1 .42 .28 .7
2 .18 .12 .3

.6 .4 1
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2.2 Comparing Proportions in 2× 2 Tables

Conditional distributions:

Y

S F

X
1 π1 1 − π1

2 π2 1 − π2

π̂1 − π̂2 = p1 − p2 SE(p1 − p2) =

√
p1(1 − p1)

n1
+
p2(1 − p2)

n2

Physicians’ Health Study (ctd)

p1 = 0.017 p2 = 0.009 p1 − p2 = 0.008

SE =

√
0.017× 0.983

11034
+

0.009× 0.991
11037

= 0.0015

95% CI for π1 − π2: .008± 1.96(.0015) = .008± .003 = (.005, .011)
Apparently π1 − π2 > 0 (i.e., π1 > π2).
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Relative Risk

relative risk =
π1

π2

Physicians’ Health Study (ctd)

Sample relative risk in the Physicians Health Study is

p1

p2
=

0.017
0.009

= 1.82

Sample proportion of heart attacks was 82% higher for placebo group.

I See p. 58 of text for CI formula for relative risk.

Example: 95% CI for RR in PHS is (1.43, 2.31).

I Independence ⇐⇒ π1
π2

= 1
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2.3 The Odds Ratio

S F

Group
1 π1 1 − π1

2 π2 1 − π2

The odds of response S (instead of F) is
Pr(S)
Pr(F)

.

In the 2× 2 table above: odds(S) =


π1

1 − π1
in row 1

π2

1 − π2
in row 2

Note

I if odds(S) = 3, then S is three times as likely as F;

I if odds(S) = 1
3 , then F is three times as likely as S.
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Pr(S) =
odds(S)

1 + odds(S)

odds(S) = 3 =⇒ Pr(S) =
3

1 + 3
=

3
4

Pr(F) =
1
4

odds(S) =
1
3

=⇒ Pr(S) =
1/3

1 + 1/3
=

1/3
4/3

=
1
4

Pr(F) =
3
4
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S F

Group
1 π1 1 − π1

2 π2 1 − π2

Definition (Odds Ratio)

Odds Ratio: θ =
π1/(1 − π1)

π2/(1 − π2)
=
π1(1 − π2)

π2(1 − π1)
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Physicians Health Study (ctd)

Group MI
Y N Total

Placebo 189 10845 11034
Aspirin 104 10933 11037

Sample proportions:
p1 1 − p1

p2 1 − p2
=

0.0171 0.9829 1.0
0.0094 0.9906 1.0

sample odds =


0.0171
0.9829

=
189

10845
= 0.0174 placebo

0.0094
0.9906

=
104

10933
= 0.0095 aspirin

sample odds ratio = θ̂ =
0.0174
0.0095

= 1.83

Estimate odds of heart attack in placebo group to be 1.83 times odds in
aspirin group.
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Properties of the Odds Ratio
I For counts

S F
n11 n12

n21 n22
θ̂ =

n11/n12

n21/n22
=
n11n22

n12n21
= cross-product ratio

I Treats X, Y symmetrically:

MI Group
Placebo Aspirin

Y 189 104
N 10845 10933

=⇒ θ̂ = 1.83

I Each odds > 0 and θ > 0.

I θ = 1 when π1 = π2; i.e., when response independent of group.

I The further θ is from 1, the stronger the association.

(For Y = lung cancer, some studies have θ ≈ 10 for X = smoking,
θ ≈ 2 for X = passive smoking.)
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I If rows are interchanged (or if columns are interchanged), θ 7→ 1/θ.

For example, a value of θ = 1/5 indicates the same strength of
association as θ = 5, but in the opposite direction.

I θ = 1 ⇐⇒ log θ = 0

The log odds ratio (log θ) is symmetric about 0, e.g.,

θ = 2 ⇐⇒ log θ = 0.7

θ =
1
2
⇐⇒ log θ = −0.7

I Sampling distribution of θ̂ is skewed to the right.
Normal approximation is good only if n is very large.

I Sampling distribution of log θ̂ is closer to normal, so construct CI for
log θ and then exponentiate endpoints to get CI for θ.

Note: We use “natural logs” (with base e = 2.718 . . .)
LN on most calculators.
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A Confidence Interval for the Odds Ratio

Large-sample (asymptotic) SE of log θ̂ is

SE(log θ̂) =

√
1
n11

+
1
n12

+
1
n21

+
1
n22

CI for log θ: (L,U) = log θ̂± zα/2 × SE(log θ̂)

CI for θ: (eL, eU).
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Physicians Health Study (ctd)

θ̂ =
189× 10933
104× 10845

= 1.83

log θ̂ = log(1.83) = 0.605

SE(θ̂) =

√
1

189
+

1
10845

+
1

104
+

1
10933

= 0.123

95% CI for log θ: 0.605± 1.96(0.123) = (0.365, 0.846)

95% CI for θ: (e0.365, e0.846) = (1.44, 2.33)

Apparently θ > 1.
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Remarks

I θ̂ not midpoint of CI because of skewness

I Better estimate if we use {nij + 0.5}. Especially if any nij = 0.

I When π1 and π2 close to zero,

θ =
π1/(1 − π1)

π2/(1 − π2)
≈ π1

π2
= relative risk
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Review: Exponential and Natural Logarithm Functions

exp x = ex (exponential function)

e0 = 1 e1 = 2.718 . . . e−1 =
1
e
= 0.368

ex > 0 for all x

Exponential function is the antilog for the natural logarithm ln = loge

ex = y ⇐⇒ loge(y) = x

e0 = 1 means loge(1) = 0

e1 = 2.718 means loge(2.718) = 1

e−1 = 0.368 means loge(0.368) = −1

loge(2) = 0.693 means e0.693 = 2
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Case-control study in London Hospitals (Doll and Hill, 1950)

X = smoked > 1 cigarette per day for at least 1 year

Y = lung cancer

Smoked Cancer
Yes No

Yes 688 650
No 21 59
Total 709 709

Case-control studies are “retrospective.” Binomial sampling model
applies to X (sampled within levels of Y), not to Y.

Cannot estimate Pr(Y = yes|X). Cannot estimate

π1 − π2 = Pr(Y = yes|X = yes) − Pr(Y = yes|X = no).

Cannot estimate π1/π2.
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Case-control study in London Hospitals (Doll and Hill, 1950) (ctd)

However, we can estimate Pr(X|Y) so we can estimate θ (recall that θ
treats rows and columns symmetrically).

θ̂ =
P̂r(X = yes|Y = yes)/P̂r(X = no|Y = yes)

P̂r(X = yes|Y = no)/P̂r(X = no|Y = no)

=
(688/709)/(21/709)
(650/709)/(59/709)

=
688× 59
21× 650

= 2.97

Odds of lung cancer for smokers estimated to be about 3 times the odds
for non-smokers.

If Pr(Y = yes|X) is near 0 (lung cancer rare in both groups), then
θ ≈ π1/π2 = relative risk, and can conclude that probability of lung
cancer is ≈ 3 times as high for smokers as for non-smokers.
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2.4 Testing Independence

Job Satisfaction and Income

Data from General Social Survey (1991)

Income Job Satisfaction

Dissat Little Moderate Very Total

<5K 2 4 13 3 22
5K–15K 2 6 22 4 34
15K–25K 0 1 15 8 24
>25K 0 3 13 8 24

Total 4 14 63 23 104
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H0 : X and Y independent vs Ha : X and Y dependent

H0 means that for all (i, j)

Pr(X = i, Y = j) = Pr(X = i) Pr(Y = j)

πij = πi+π+j

Expected frequency is

µij = mean of dist. of cell count nij
= nπij

= nπi+π+j under H0

MLEs under H0 are

µ̂ij = nπ̂i+π̂+j

= n
(ni+
n

)(n+j

n

)
=
ni+n+j

n

µ̂ij are called estimated expected frequencies.
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Chi-Squared Test of Independence

Usual test statistic is Pearson’s chi-squared statistic:

X2 =
∑
ij

(nij − µ̂ij)
2

µ̂ij
=
∑

all cells

(observed − expected)2

expected

X2 has a large-sample chi-squared dist. under H0, with

df = (I− 1)(J− 1)

where I = number of rows, J = number of columns.

p-value = Pr(X2 > X2
obs) = right-tail prob

(Table given on p. 343 of text.)

Note: chi-squared dist. has µ = df, σ =
√

2× df and becomes more
bell-shaped as df increases.
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Job Satisfaction and Income (ctd)

X2 = 11.5

df = (I− 1)(J− 1) = 3× 3 = 9

p-value = Pr(X2 > 11.5) = 0.2415

The evidence against H0 is weak: it is plausible that job satisfaction and
income are independent.
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Likelihood-Ratio Test of Independence

Test statistic

G2 = −2 log
(

maximized likelihood when H0 true
maximized likelihood generally

)
= 2
∑
ij

nij log
(
nij

µ̂ij

)

Dist. of G2 under H0 is also approx. chi-squared df = (I− 1)(J− 1).

Job Satisfaction and Income (ctd)

G2 = 13.47

df = 9

p-value = 0.1426
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Degrees of Freedom for Chi-Squared Test

df for X2 test = # parameters in general − # parameters under H0

Example (Degrees of Freedom for Chi-Squared Test of Indep)

Independence: H0 : πij = πi+π+j∑
ij

πij = 1
∑
i

πi+ = 1
∑
j

π+j = 1

I In general there are IJ− 1 free parameters: If we know IJ− 1 of the
πij, then we know the last one because they must add to 1.

I Under H0, there are (I− 1) + (J− 1) free parameters: (I− 1) free
πi+ and (J− 1) free π+j. These determine the πij under H0.

Thus

df = (IJ− 1) −
[
(I− 1) + (J− 1)

]
= (I− 1)(J− 1)
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Remarks

I If all nij = µ̂ij, then X2 = G2 = 0.

I As n ↑, X2 d−→ χ2 faster than G2 d−→ χ2, but X2 and G2 are usually
similar if most µ̂ij > 5.

I These tests treat X and Y as nominal: reordering rows or columns
leaves X2, G2 unchanged.

Sec. 2.5 (we skip) presents ordinal tests. We re-analyze the job sat
data with an ordinal model in Ch. 6 (more powerful test, much
smaller p-value).
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Residuals
Definition (Standardized (or Adjusted) Residuals)

rij =
nij − µ̂ij√

µ̂ij(1 − pi+)(1 − p+j)

Under H0 : independence, rij ≈ std normal N(0, 1).

Job Satisfaction and Income (ctd)

n44 = 8 µ̂44 =
24× 23

104
= 5.31

r44 =
8 − 5.31√

5.31
(
1 − 24

104

)(
1 − 23

104

) = 1.51

None of the cells show very strong evidence of association.
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Standardized Residuals for Job Satisfaction Data

Income Dissat Little Moderate Very
<5K 1.44 0.73 −0.16 −1.08
5K–15K 0.75 0.87 0.60 −1.77
15K–25K −1.12 −1.52 0.22 1.51
>25K −1.12 −0.16 −0.73 1.51
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Getting Tabled Data into R

There are many ways to enter contingency table data into R. With a
simple two-way table, perhaps the easiest is to enter the data as matrix
of counts. We will illustrate with Example 2.44 from the text concerning
Party Affiliation by Gender (pag). Note that by default a matrix is read by
columns. The as.table() function lets R know that the matrix
represents a contigency table of counts.

> pag.tab <- matrix(c(762, 484, 327, 239, 468, 477), nrow=2)

> dimnames(pag.tab) <-

list(Gender=c("Female","Male"),

Party=c("Democrat","Independent","Republican"))

> pag.tab <- as.table(pag.tab)

> pag.tab

Party

Gender Democrat Independent Republican

Female 762 327 468

Male 484 239 477
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Once the data are saved as a table as above, we can easily convert
them to an data frame, an R data structure with a column for each
variable and a row for each observation.

> pag.df <- as.data.frame(pag.tab)

> pag.df

Gender Party Freq

1 Female Democrat 762

2 Male Democrat 484

3 Female Independent 327

4 Male Independent 239

5 Female Republican 468

6 Male Republican 477
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Alternatively, we could create the data frame first, with a row for each
combination of factor levels. Here the expand.grid function can save
us some work.

> pag.df <-

expand.grid(Gender=c("Female","Male"),

Party=c("Democrat","Independent","Republican"))

> pag.df

Gender Party

1 Female Democrat

2 Male Democrat

3 Female Independent

4 Male Independent

5 Female Republican

6 Male Republican

> pag.df$Freq <- c(762, 484, 327, 239, 468, 477)
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Having created the data frame, we can generate the table using the
xtabs function.

> pag.df

Gender Party Freq

1 Female Democrat 762

2 Male Democrat 484

3 Female Independent 327

4 Male Independent 239

5 Female Republican 468

6 Male Republican 477

> xtabs(Freq ~ Gender + Party, data=pag.df)

Party

Gender Democrat Independent Republican

Female 762 327 468

Male 484 239 477
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The data could also be read from the columns of text file or a
comma-separated (csv) file. The csv format provides an easy way to
move data from a spreadsheet program into R or vice versa. The text or
csv file should have a separate row for each combination of factor levels.

Thus a text file Data/pag.txt containing can be read into an R
dataframe via

> pag.df <- read.table("Data/pag.txt", header=TRUE)
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Similarly, a csv file Data/pag.csv containing can be read into an R
dataframe via

> pag.df <- read.csv("Data/pag.csv")

See the R help for read.table and read.csv for more information.
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Computations on Tables
Marginal Totals

> pag.tab

Party

Gender Democrat Independent Republican

Female 762 327 468

Male 484 239 477

> margin.table(pag.tab, 1)

Gender

Female Male

1557 1200

> margin.table(pag.tab, 2)

Party

Democrat Independent Republican

1246 566 945
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> addmargins(pag.tab)

Party

Gender Democrat Independent Republican Sum

Female 762 327 468 1557

Male 484 239 477 1200

Sum 1246 566 945 2757
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Computations on Tables
Sample Proportions

Overall proportions {pij} :

> prop.table(pag.tab)

Party

Gender Democrat Independent Republican

Female 0.276387 0.118607 0.169750

Male 0.175553 0.086688 0.173014

> round(prop.table(pag.tab), 3)

Party

Gender Democrat Independent Republican

Female 0.276 0.119 0.170

Male 0.176 0.087 0.173
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Computations on Tables
Sample Proportions

Row proportions:

> prop.table(pag.tab, 1)

Party

Gender Democrat Independent Republican

Female 0.48940 0.21002 0.30058

Male 0.40333 0.19917 0.39750

Column proportions:

> prop.table(pag.tab, 2)

Party

Gender Democrat Independent Republican

Female 0.61156 0.57774 0.49524

Male 0.38844 0.42226 0.50476
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Computations on Tables
Chi-Square Test for Independence

> chisq.test(pag.tab)

Pearson's Chi-squared test

data: pag.tab

X-squared = 30.07, df = 2, p-value = 2.954e-07
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> pag.chisq <- chisq.test(pag.tab)

> names(pag.chisq)

[1] "statistic" "parameter" "p.value" "method"

[5] "data.name" "observed" "expected" "residuals"

[9] "stdres"

> pag.chisq$statistic

X-squared

30.07

> pag.chisq$parameter

df

2

> pag.chisq$p.value

[1] 2.9536e-07
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> pag.chisq$observed

Party

Gender Democrat Independent Republican

Female 762 327 468

Male 484 239 477

> pag.chisq$expected

Party

Gender Democrat Independent Republican

Female 703.67 319.65 533.68

Male 542.33 246.35 411.32

> with(pag.chisq, sum((observed - expected)^2/expected))

[1] 30.07
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Unadjusted (or raw) Pearson residuals:

> pag.chisq$residuals

Party

Gender Democrat Independent Republican

Female 2.19886 0.41137 -2.84324

Male -2.50467 -0.46858 3.23867

Standardized (or adjusted) Pearson residuals:

> pag.chisq$stdres

Party

Gender Democrat Independent Republican

Female 4.50205 0.69945 -5.31595

Male -4.50205 -0.69945 5.31595
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Partitioning Chi-squared

The sum of two independent chi-squared random variables has a
chi-squared distribution with df equal to the sum of the df of the two
components. Symbolically:

χ2
a,χ2

b independent =⇒ χ2
a + χ2

b ∼ χ2
a+b

I G2 statistic for testing independence can be partitioned into
components representing certain aspects of the association.

I Partition of X2 is only approximate.

I Text discusses how to partition so that separate components are
independent. This is required for G2 to partition exactly.
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Job Satisfaction and Income (ctd)

Income Job Satisfaction

Dissat Little Moderate Very

<5K 2 4 13 3
5K–15K 2 6 22 4
15K–25K 0 1 15 8
>25K 0 3 13 8

Recall X2 = 11.52, G2 = 13.47, df = 9.

Income Job Satisfaction

Dissat Little Moderate Very

<5K 0.091 0.182 0.591 0.136
5K–15K 0.059 0.176 0.647 0.118
15K–25K 0.000 0.042 0.625 0.333
>25K 0.000 0.125 0.542 0.333
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Job Satisfaction and Income (ctd)

Income JobSat
VD LS MS VS X2 G2 df

Low
<5 2 4 13 3 0.30 0.30 3
5–15 2 6 22 4

High
15–25 0 1 15 8 1.14 1.19 3
>25 0 3 13 8

Low vs High
<15 4 10 35 7 10.32 11.98 3
>15 0 4 28 16

Sum
11.76 13.47 9

I Job satis. appears to depend on whether income > or < $15K.

I For X2, note 0.30 + 1.14 + 10.32 = 11.76 6= 11.52.
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Exact Inference for Small Samples
2× 2 Case: Fisher’s Exact Test

H0: X, Y independent.

Y

1 2

X
1 n11 n12 n1+

2 n21 n22 n2+

n+1 n+2 n

Treating the row and column totals as fixed, the exact null distribution of
{nij} is the hypergeometric distribution:

P(n11) =

(
n1+

n11

)(
n2+

n+1 − n11

)
(
n

n+1

) , where
(
a

b

)
=

a!
b!(a− b)!
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Lady Tasting Tea (Fisher)

The lady is told that milk was poured first in 4 cups and tea first in the
other 4. Order of tasting is randomized. Asked to identify the 4 cups
with milk poured first.

Guess
Milk Tea

Poured First
Milk ? 4
Tea 4

4 4 8

n11 = 0, 1, 2, 3, or 4.

Under H0,
4 0
0 4

has probability

P(4) =

(
4
4

)(
4

4 − 4

)
(

8
4

) =

4!
4!0!
× 4!

0!4!
8!

4!4!

=
4!4!
8!

=
1
70

= 0.014
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Lady Tasting Tea (ctd)

Under H0,
3 1
1 3

has probability

P(3) =

(
4
3

)(
4
1

)
(

8
4

) =
16
70

= 0.229

> cbind(0:4, dhyper(0:4, 4, 4, 4)) n11 P(n11)

0 0.014
1 0.229
2 0.514
3 0.229
4 0.014
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For 2× 2 tables,

H0 : indep ⇐⇒ H0 : θ = 1 (θ = odds ratio)

To test H0 : θ = 1 vs Ha : θ > 1

p-value = Pr
(
θ̂ > θ̂obs

)
= Pr

(
n11 > nobs

11
)

Lady Tasting Tea (ctd)

Lady guesses correctly on 3 of the milk-first cups and 3 of the tea-first:

Guess
Milk Tea

Poured First
Milk 3 1 4
Tea 1 3 4

4 4 8

n11 = 3

p-value = Pr(n11 > 3) = P(3) + P(4) = 0.229 + 0.014 = 0.243

Very little evidence against H0.
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> TeaTasting <-

matrix(c(3, 1, 1, 3),

nrow = 2,

dimnames = list(Truth = c("Milk", "Tea"),

Guess = c("Milk", "Tea")))

> TeaTasting <- as.table(TeaTasting)

> fisher.test(TeaTasting, alternative = "greater")

Fisher's Exact Test for Count Data

data: TeaTasting

p-value = 0.2429

alternative hypothesis: true odds ratio is greater than 1

95 percent confidence interval:

0.31357 Inf

sample estimates:

odds ratio

6.4083
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To test H0 : θ = 1 vs Ha : θ 6= 1

p-value = two-tail prob. of outcomes no more likely than that observed

In the lady tasting tea example, the p-value for the two-tailed test is

p-value = P(0) + P(1) + P(3) + P(4) = 0.486

> fisher.test(TeaTasting, alternative = "two.sided")

Fisher's Exact Test for Count Data

data: TeaTasting

p-value = 0.4857

alternative hypothesis: true odds ratio is not equal to 1

95 percent confidence interval:

0.21173 621.93375

sample estimates:

odds ratio

6.4083
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Remarks

I If formal test (e.g., reject H0 if p-value 6 α = .05), then actual
Pr(type I error) < α because of discreteness (see text).

I Margins may be fixed by design, but test valid even if not.

I Fisher’s exact test extends to I× J tables.
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> sattab

Job Satisfaction

Income Dissat Little Moderate Very

<5K 2 4 13 3

5K--15K 2 6 22 4

15K--25K 0 1 15 8

>25K 0 3 13 8

> fisher.test(sattab)

Fisher's Exact Test for Count Data

data: sattab

p-value = 0.2315

alternative hypothesis: two.sided
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Three-Way Contingency TablesFL Death Penalty Cases
> data(deathpenalty)

> deathpenalty

DeathPenalty Defendant Victim Freq

1 Yes White White 53

2 No White White 414

3 Yes Black White 11

4 No Black White 37

5 Yes White Black 0

6 No White Black 16

7 Yes Black Black 4

8 No Black Black 139

> deathpenalty <-

transform(deathpenalty,

DeathPenalty = relevel(DeathPenalty, "Yes"),

Defendant = relevel(Defendant, "White"),

Victim = relevel(Victim, "White"))
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FL Death Penalty Cases (ctd)
> dp <- xtabs(Freq ~ Victim + Defendant + DeathPenalty,

data=deathpenalty)

> dp

, , DeathPenalty = Yes

Defendant

Victim White Black

White 53 11

Black 0 4

, , DeathPenalty = No

Defendant

Victim White Black

White 414 37

Black 16 139
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FL Death Penalty Cases (ctd)
> dpflat <- ftable(DeathPenalty ~ Victim + Defendant,

data=dp)

> dpflat

DeathPenalty Yes No

Victim Defendant

White White 53 414

Black 11 37

Black White 0 16

Black 4 139
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FL Death Penalty Cases (ctd)

Y = death penalty (response var.)

X = defendant’s race (explanatory)

Z = victim’s race (control var.)

> round(100*prop.table(dpflat,1), 1)

DeathPenalty Yes No

Victim Defendant

White White 11.3 88.7

Black 22.9 77.1

Black White 0.0 100.0

Black 2.8 97.2
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The tables

Def DeathPen
Yes No

White 53 414
Black 11 37

and

Def DeathPen
Yes No

White 0 16
Black 4 139

are called partial tables. They control for Z (hold it constant).

The (estimated) conditional odds ratios are:

Z = white : θ̂XY(1) =
53× 37
414× 11

= 0.43 (0.42 after add .5 to all cells)

Z = black : θ̂XY(2) =
0× 139
16× 4

= 0 (0.94 after add .5 to all cells)

Controlling for victim’s race, odds of receiving death penalty were lower
for white defendants than for black defendants.
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Adding the partial tables gives XY marginal table.

Def DeathPen
Yes No

White 53 430
Black 15 176

θ̂XY = 1.45

Ignoring victim’s race, odds of death penalty higher for white
defendants.

Definition (Simpson’s Paradox)

All partial tables show reverse association from that in marginal table.

I Cause?

I Moral: can be dangerous to “collapse” contingency tables.
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Definition (Conditional Independence)

X and Y are conditionally independent given Z if they are independent in
each partial table.

In a 2× 2× K table this means

θXY(1) = · · · = θXY(K) = 1.0
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Remark

Conditional independence does not imply that X and Y are independent
in the marginal two-way table.

Example:

Response
Clinic Treatment Y
Z X S F θ̂

1
A 18 12

1.0
B 12 8

2
A 2 8

1.0
B 8 32

Marginal
A 20 20

2.0
B 20 40
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Chapter 3: Generalized Linear Models
3.1 Components of a GLM

1. Random Component

Identify response variable Y.

Assume independent observations y1, . . . ,yn from particular
family of distributions, e.g., Poisson or binomial.

2. Systematic Component

Model how µ = E(Y) depends on explanatory variables x1, . . . , xk.

I Linear predictor : α+ β1x1 + · · ·+ βkxk.

I Link function: Assume that µ = E(Y) satisfies

g(µ) = α+ β1x1 + · · ·+ βkxk

g is the link function.
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Examples

I log(µ) = α+ β1x1 + · · ·+ βkxk uses g(µ) = log(µ).

The log link is often used for a “count” response for which µ > 0.

I log
( µ

1 − µ

)
= α+ β1x1 + · · ·+ βkxk

uses g(µ) = log
( µ

1 − µ

)
, the logit link. logit = log(odds).

Often used for binomial, with µ = π between 0 and 1.

I µ = α+ β1x1 + · · ·+ βkxk uses g(µ) = µ, the identity link, e.g.,
ordinary regression for a normal response.
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Remarks

I A GLM generalizes ordinary regression by
I permitting Y to have a nonnormal dist.

I permitting modeling of g(µ) rather than µ.

I The same ML (maximum likelihood) fitting procedure applies to all
GLMs. It is the basis of the glm() function in R and of proc
genmod in SAS.
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3.2 GLMs for Binary Data

Suppose Y = 1 or 0 (“Bernoulli” or “binary” random variable).

Let P(Y = 1) = π P(Y = 0) = 1 − π.

This is binomial for n = 1 trial.

E(Y) = π

Var(Y) = π(1 − π)

For an explanatory variable x, π = π(x) varies as x varies.
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Linear Probability Model

π(x) = α+ βx

A GLM with binomial random component and identity link function.

Var(Y) = π(x)
[
1 − π(x)

]
varies as x varies, so least squares not

optimal.

Use ML to fit this and other GLMs.
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Infant Malformation

Y = infant sex organ malformation (1 = present, 0 = absent)

x = mother’s alcohol consumption (avg drinks per day)

Alcohol Consumption
Measured Score

0 0.0
< 1 0.5
1–2 1.5
3–5 4.0
> 6 7.0
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Infant Malformation (ctd)
> data(malformation)

> malformation

Alcohol Malformation Freq

1 0.0 Present 48

2 0.0 Absent 17066

3 0.5 Present 38

4 0.5 Absent 14464

5 1.5 Present 5

6 1.5 Absent 788

7 4.0 Present 1

8 4.0 Absent 126

9 7.0 Present 1

10 7.0 Absent 37

98



Example (Infant Malformation (ctd))
> malform.tab <- xtabs(Freq ~ Alcohol + Malformation,

data=malformation)

> malform.tab

Malformation

Alcohol Absent Present

0 17066 48

0.5 14464 38

1.5 788 5

4 126 1

7 37 1

> round(100*prop.table(malform.tab, 1), 2)

Malformation

Alcohol Absent Present

0 99.72 0.28

0.5 99.74 0.26

1.5 99.37 0.63

4 99.21 0.79

7 97.37 2.63
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Infant Malformation (ctd)

To fit a glm to these (grouped binary) data, we first need to recast the
data frame into a wide format.

> library(reshape2)

> malformwide <- dcast(malformation,

Alcohol ~ Malformation,

value.var="Freq")

> malformwide

Alcohol Absent Present

1 0.0 17066 48

2 0.5 14464 38

3 1.5 788 5

4 4.0 126 1

5 7.0 37 1
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Infant Malformation: Linear Probability Model

Two ways to fit the same binomial model in R.

> malform.lin <-

glm(cbind(Present,Absent) ~ Alcohol,

family=binomial(link=make.link("identity")),

data=malformwide)

> malformwide <-

transform(malformwide, Total = Present + Absent)

> malform.lin.alt <-

glm(Present/Total ~ Alcohol, weights=Total,

family=binomial(link=make.link("identity")),

data=malformwide)

> coef(malform.lin)

(Intercept) Alcohol

0.0025476 0.0010872

> summary(malform.lin)
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Call:

glm(formula = cbind(Present, Absent) ~ Alcohol, family = binomial(link = make.link("identity")),

data = malformwide)

Deviance Residuals:

1 2 3 4 5

0.656 -1.049 0.863 0.130 0.828

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.002548 0.000352 7.23 4.8e-13

Alcohol 0.001087 0.000832 1.31 0.19

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.2020 on 4 degrees of freedom

Residual deviance: 2.9795 on 3 degrees of freedom

AIC: 25.61

Number of Fisher Scoring iterations: 10
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Infant Malformation: Linear Probability Model (ctd)

Linear probability model for π = Pr(malformation) has ML fit

π̂ = α̂+ β̂x = 0.0025 + 0.0011 x

I At x = 0, π̂ = α̂ = 0.0025 .

I π̂ increases by β̂ = 0.0011 for each 1-unit increase in alcohol
consumption.
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Remarks

I ML estimates α̂ and β̂ obtained by iterative numerical optimization.

I To test H0 : β = 0 (independence), can use z =
β̂− 0
SE(β̂)

.

For large n has approx. std. normal dist. under H0.

I z =
0.0011

0.00083
= 1.31 For Ha : β 6= 0, p-value = 0.19

I Could use Pearson X2 (or G2) to test independence, but ignores
ordering of rows.

I Alternative way to apply X2 (or deviance G2) is to test fit of model:
compares observed counts to values predicted by fitted model.

I Same fit results if we enter 5 binomial “success counts” or the
32574 individual binary responses of 0 (failure) or 1 (success).

I Problem: Model π(x) = α+ βx can give π̂ > 1 or π̂ < 0.
More realistic models take π(x) to be nonlinear in x.
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Logistic Regression Model

log
(

π

1 − π

)
= α+ βx

is a GLM for binomial Y with logit link.

In R, the default link for the binomial family is the logit.

Infant Malformation: Logistic Regression Model
> malform.logit <- glm(cbind(Present,Absent) ~ Alcohol,

family=binomial, data=malformwide)

> summary(malform.logit)
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Call:

glm(formula = cbind(Present, Absent) ~ Alcohol, family = binomial,

data = malformwide)

Deviance Residuals:

1 2 3 4 5

0.592 -0.880 0.886 -0.145 0.129

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -5.960 0.115 -51.64 <2e-16

Alcohol 0.317 0.125 2.52 0.012

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 6.2020 on 4 degrees of freedom

Residual deviance: 1.9487 on 3 degrees of freedom

AIC: 24.58

Number of Fisher Scoring iterations: 4
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Infant Malformation: Logistic Regression Model (ctd)

logit(π̂) = log
( π̂

1 − π̂

)
= −5.96 + 0.32 x

I π̂ ↑ as x ↑.
I p-value = 0.012 for H0 : β = 0 vs Ha : β 6= 0.

I But p-value = 0.3 if delete single “present” obs. in > 6 drinks row!!
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Remarks

I Chap. 4 studies logistic regression model.

I For contingency table, can test H0 : ”model correctly specified” with
X2 and G2 test statistics using expected counts predicted by model.

I Ex: X2 = 2.05, G2 = 1.95 for H0 : logistic model correct.
df = 3 = (5 binomial obs) − (2 parameters)
p-value large, no evidence against H0.

I Both linear probability model and logistic regression model fit infant
malformation data adequately. How is this possible?

logistic ≈ linear when π̂ near 0 for all observed x.

Ditto when π̂ near 1 for all observed x.
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3.3 GLMs for Count Data

When Y is a count (0, 1, 2, 3, . . .) usually assume a Poisson dist:

P(y) =
µye−µ

y!
, y = 0, 1, 2, . . .

I µ = E(Y)

I Var(Y) = µ, σ =
√
µ

I In practice often σ2 > µ, i.e., variation greater than predicted by
Poisson (overdispersion).

I Negative binomial dist. has separate parameter for σ2 and allows
for overdispersion.

109



> plot(0:10, dpois(0:10,2.25), type="h",

xlab="y", ylab="p(y)", main="Poisson(mu=2.25)")

> plot(0:18, dpois(0:18,7.3), type="h",

xlab="y", ylab="p(y)", main="Poisson(mu=7.3)")
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Poisson Regression for Count Data

Assume Y has a Poisson dist., x an explanatory variable.

Model:

µ = α+ βx identity link

or

log(µ) = α+ βx log link

Loglinear models use Poisson with log link (details in Ch. 7)
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Defects in Silicon Wafers

Y = number defects on silicon wafer

x = dummy var. for treatment (0 = A, 1 = B)

> A <- c(8,7,6,6,3,4,7,2,3,4)

> B <- c(9,9,8,14,8,13,11,5,7,6)

> trt <- factor(rep(c("A","B"), each=10))

> wafers <- data.frame(trt=trt, defects=c(A,B))

> wafers.lin <- glm(defects ~ trt,

family=poisson(link="identity"),

data=wafers)

> wafers.loglin <- glm(defects ~ trt,

family=poisson(link="log"),

data=wafers)

> summary(wafers.lin)

> summary(wafers.loglin)
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Call:

glm(formula = defects ~ trt, family = poisson(link = "identity"),

data = wafers)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.528 -0.762 -0.170 0.694 1.540

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.000 0.707 7.07 1.5e-12

trtB 4.000 1.183 3.38 0.00072

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27.857 on 19 degrees of freedom

Residual deviance: 16.268 on 18 degrees of freedom

AIC: 94.35

Number of Fisher Scoring iterations: 3
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Call:

glm(formula = defects ~ trt, family = poisson(link = "log"),

data = wafers)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.528 -0.762 -0.170 0.694 1.540

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.609 0.141 11.38 < 2e-16

trtB 0.588 0.176 3.33 0.00086

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 27.857 on 19 degrees of freedom

Residual deviance: 16.268 on 18 degrees of freedom

AIC: 94.35

Number of Fisher Scoring iterations: 4
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Defects in Silicon Wafers (ctd)

For linear model µ = α+ βx (identity link)

µ̂ = 5 + 4 x

x = 0 : µ̂A = 5 (= yA)

x = 1 : µ̂B = 9 (= yB)

β̂ = 4 = µ̂B − µ̂A has SE = 1.18 (use for test and CI for β)

For loglinear model log(µ) = α+ βx (log link)

log(µ̂) = 1.609 + 0.588 x

x = 0 : log µ̂A = 1.609 µ̂A = e 1.609 = 5

x = 1 : log µ̂B = 1.609 + 0.588 = 2.197 µ̂B = e 2.197 = 9
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3.4 Inference and Model Checking for GLMs
Wald Test

Test H0 : β = 0

I z =
β̂

SE
has approx. N(0, 1) dist. under H0.

I For Ha : β 6= 0 can also use Wald stat. z2 =

(
β̂

SE

)2

approx. χ2
1.

I For H0 : β = β0, use z =
β̂− β0

SE
.

I Wald CI = set of β0 values for which |β̂− β0|/SE < zα/2, i.e.,

β̂± zα/2 SE
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Likelihood Ratio Test

Test H0 : β = 0 vs Ha : β 6= 0

l0 = maximized likelihood when β = 0

l1 = maximized likelihood for arbitrary β

test stat = −2 log
(
l0

l1

)
= −2

[
log l0 − log l1

]
= −2(L0 − L1)

where L = maximized log-likelihood.
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Defects in Silicon Wafers (ctd)

Log-linear model: log(µ) = α+ βx.

β = logµB − logµA

H0 : µA = µB ⇐⇒ β = 0

Wald Test

z =
β̂

SE
=

0.588

0.176
= 3.33 p-value = 2× 0.00043 = 0.00086

or

z2 = 11.1 df = 1 p-value = 0.00086

Likelihood-Ratio Test

L1 = −45.17 L0 = −50.97

Test stat: − 2(L0 − L1) = 11.6 df = 1 p-value = 0.00066
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For binomial and Poisson GLMs, LR test statistics can be computed as
a difference in deviances for two nested models. In R:

I the deviance for the fitted model is labelled as the “residual
deviance.” Analogous to the residual (or error) sum of squares in
ordinary linear regression.

I the “null deviance” is the deviance for the model with intercept only
(no predictors). Analogous to the total sum of squares.

I the difference between null and residual deviances is the LR
statistic for testing the null hypothesis that all the regression
coefficients (except for the intercept) equal 0. Analogous to the
regression sum of squares.

I With only a single predictor x, the difference in null and residual
deviances is the LR statistic for testing β = 0, e.g.,
27.9 − 16.3 = 11.6.
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The drop1 function tests one coefficient at a time, while controlling for
all other variables in the model. (Here there are no other variables in the
model.)

> drop1(wafers.loglin, test="Chisq")

Single term deletions

Model:

defects ~ trt

Df Deviance AIC LRT Pr(>Chi)

<none> 16.3 94.3

trt 1 27.9 103.9 11.6 0.00066
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The anova function is useful for testing a sequence of nested models.
Here only one fitted model is given, so it is tested against the null model
with all coefficients equal to zero (intercept-only model).

> anova(wafers.loglin, test="Chisq")

Analysis of Deviance Table

Model: poisson, link: log

Response: defects

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)

NULL 19 27.9

trt 1 11.6 18 16.3 0.00066
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Remarks

I For very large n, Wald and LR tests are approx. equivalent, but for
small to moderate n the LR test is more reliable and powerful.

I LR method also extends to CIs: (1 − α)× 100% CI is set of β0 for
which p-value > α in LR test of H0 : β = β0. Computed by
confint() function in R.
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Wafer Defects

Log-linear model: log(µ) = α+ βx.

β = logµB − logµA = log
(
µB
µA

)
eβ =

µB
µA

eβ̂ = e 0.5878 = 1.8 =
µ̂B
µ̂A

95% Wald CI for β: 0.588 ± ( 1.96 )( 0.176 ) = (0.242, 0.933)

95% CI for eβ =
µB
µA

: (e 0.242 , e 0.933 ) = (1.27, 2.54)

We are 95% confident that µB is from 1.27 to 2.54 times as large as µA.

CI for β based on LR test is (0.247, 0.94).

CI for eβ = µB/µA is (e 0.247 , e 0.94 ) = (1.28, 2.56).
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> wafCI.LR <- confint(wafers.loglin)

> wafCI.Wald <- confint.default(wafers.loglin)

> wafCI.LR

2.5 % 97.5 %

(Intercept) 1.31884 1.8744

trtB 0.24691 0.9401

> exp(wafCI.LR)

2.5 % 97.5 %

(Intercept) 3.7391 6.5168

trtB 1.2801 2.5602

> wafCI.Wald

2.5 % 97.5 %

(Intercept) 1.33226 1.88662

trtB 0.24208 0.93349
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Deviance

The saturated model has a separate parameter for each observation
and fits the data perfectly: µ̂i = yi.

For a model M with maximized log-likelihood LM

deviance = −2(LM − LS) where S is the saturated model

The deviance is the LR stat. for comparing model M to the saturated
model S, i.e., for

H0: model M holds vs Ha: saturated model
Tests that all parameters in S but not in M are equal to 0.
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For binomial and Poisson models for counts

deviance = G2 = 2
∑

yi log
(
yi
µ̂i

)
where the µ̂is computed for M. (Sum is over success and failure counts
for binomial.)

When the µ̂i are large and the number of predictor settings is fixed, G2

and Pearson’s chi-square statistic

X2 =
∑
i

(yi − µ̂i)
2

µ̂i

can used to test goodness-of-fit of model (i.e., H0: model holds).

Under H0, the distribution of G2 (and X2) is approx. χ2 with

df = no. observations − no. model parameters
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Wafer Defects (ctd)

µ̂i = 5 for 10 obs in trt A

µ̂i = 9 for 10 obs in trt B

For loglinear model, logµ = α+ βx:

deviance G2 = 16.3

Pearson X2 = 16

df = 18

These values of G2 and X2 do not contradict H0: “model holds”, but in
general we must be cautious about referring G2 and/or X2 to a
chi-square dist. Usually we require

I µ̂is all large, and

I fixed df as n ↑ (happens with contingency tables but not here).
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Remarks

I For GLMs, can study lack-of-fit using residuals (later chapters).

I Count data often show overdispersion relative to a Poisson GLM.

I.e., at fixed x, sample variance > mean, whereas
variance = mean in Poisson.

Overdispersion may be caused by subject heterogeneity.

Ex: Y = no. times attended religious services in past year.

Suppose µ = 25. Is σ2 = 25 (σ = 5)?
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Negative Binomial Regression

More flexible model for count data that has

E(Y) = µ Var(Y) = µ+Dµ2

where D > 0 is called a dispersion parameter.

As D ↓ 0, neg. binom.→ Poisson.

(Can derive neg. binom. as a “gamma mixture of Poissons”, where the
Poisson mean varies according to a gamma dist.)

Negative binomial regression models can be fit using the VGAM package
for R. Also the MASS package, and probably some others.
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Known Victims of Homicide

Within the past 12 months, how many people have you known
personally that were victims of homicide?

> homicide <-

data.frame(nvics=rep(0:6, 2),

race=rep(c("Black","White"), each=7),

Freq=c(119,16,12,7,3,2,0,1070,60,14,4,0,0,1))

> xtabs(Freq ~ race + nvics, data=homicide)

nvics

race 0 1 2 3 4 5 6

Black 119 16 12 7 3 2 0

White 1070 60 14 4 0 0 1

Black: n = 159, y = 0.52, s2 = 1.14

White: n = 1149, y = 0.09, s2 = 0.16

At these sample sizes, very unusual to see such large discrepancies
between y and s2 if the samples drawn from Poisson distributions.
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Known Victims of Homicide (ctd)

You can safely ignore this slide if you wish.

> n <- with(homicide, tapply(Freq, race, sum))

> ybar <- by(homicide, homicide$race,

function(x) weighted.mean(x$nvics, x$Freq))

> homicide$ybar <- rep(ybar, each=7)

> s2 <-

by(homicide, homicide$race,

function(x) weighted.mean((x$nvics - x$ybar)^2, x$Freq))

> cbind(n, ybar,s2)

n ybar s2

Black 159 0.522013 1.14260

White 1149 0.092254 0.15511
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Known Victims of Homicide (ctd)

Model: log(µ) = α+ βx

> ## homicide <-

> ## transform(homicide, race = relevel(race, "White"))

> options(contrasts=c("contr.SAS","contr.poly"))

> hom.poi <-

glm(nvics ~ race, data=homicide, weights=Freq,

family=poisson)

> library(MASS)

> hom.nb <-

glm.nb(nvics ~ race, data=homicide, weights=Freq)

> summary(hom.poi)

> summary(hom.nb)
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Call:

glm(formula = nvics ~ race, family = poisson, data = homicide,

weights = Freq)

Deviance Residuals:

Min 1Q Median 3Q Max

-14.05 0.00 5.26 6.22 13.31

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3832 0.0971 -24.5 <2e-16

raceBlack 1.7331 0.1466 11.8 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 962.80 on 10 degrees of freedom

Residual deviance: 844.71 on 9 degrees of freedom

AIC: 1122

Number of Fisher Scoring iterations: 6
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Call:

glm.nb(formula = nvics ~ race, data = homicide, weights = Freq,

init.theta = 0.2023119205, link = log)

Deviance Residuals:

Min 1Q Median 3Q Max

-12.75 0.00 2.09 3.28 9.11

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.383 0.117 -20.33 < 2e-16

raceBlack 1.733 0.238 7.27 3.7e-13

(Dispersion parameter for Negative Binomial(0.2023) family taken to be 1)

Null deviance: 471.57 on 10 degrees of freedom

Residual deviance: 412.60 on 9 degrees of freedom

AIC: 1002

Number of Fisher Scoring iterations: 1
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Theta: 0.2023

Std. Err.: 0.0409

2 x log-likelihood: -995.7980
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Known Victims of Homicide (ctd)

In this example, both Poisson and neg. binom. model fits have

log µ̂ = −2.38 + 1.73 x

eβ̂ = e 1.73 = 5.7
(
=
yB
yW

=
0.522
0.092

)
But, SE for β̂ is 0.147 for Poisson, 0.238 for neg. binom.

Wald 95% CI for β is
1.73 ± (1.96)( 0.147 ) = (1.45, 2.02) for Poisson fit
1.73 ± (1.96)( 0.238 ) = (1.27, 2.2) for neg. binom. fit

Leads to 95% CI for eβ = µB/µW of

(e 1.45 , e 2.02 ) = (4.25, 7.54) for Poisson

(e 1.27 , e 2.2 ) = ( 3.55 , 9.03 ) for neg. binom.

In accounting for overdispersion, neg. binom. model gives wider CIs.
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> confint.default(hom.poi)

2.5 % 97.5 %

(Intercept) -2.5736 -2.1928

raceBlack 1.4459 2.0204

> exp(confint.default(hom.poi))

2.5 % 97.5 %

(Intercept) 0.076262 0.1116

raceBlack 4.245574 7.5414

> ## confint.default(hom.nb)

> exp(confint.default(hom.nb))

2.5 % 97.5 %

(Intercept) 0.07332 0.11608

raceBlack 3.54571 9.02998
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> confint(hom.poi)

2.5 % 97.5 %

(Intercept) -2.5798 -2.1987

raceBlack 1.4437 2.0192

> exp(confint(hom.poi))

2.5 % 97.5 %

(Intercept) 0.075788 0.11095

raceBlack 4.236333 7.53253

> ## confint(hom.nb)

> exp(confint(hom.nb))

2.5 % 97.5 %

(Intercept) 0.07306 0.11573

raceBlack 3.57785 9.13164
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Known Victims of Homicide (ctd)

95% LR CIs for eβ = µB/µW are:

I (e 1.44 , e 2.02 ) = ( 4.24 , 7.53 ) for Poisson

I (e 1.27 , e 2.21 ) = ( 3.58 , 9.13 ) for neg. binom.
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Remarks

I For negative binomial model, estimated value of D is D̂ = 4.94
(SE = 1.00).

V̂ar(Y) = µ̂+ D̂µ̂2 = µ̂+ 4.94µ̂2

Strong evidence of overdispersion (D 6= 0).

I Note that glm.nb returns θ̂ = 1/D̂ = 0.2023 (SE = 0.0409 ).

V̂ar(Y) = µ̂+
µ̂2

θ̂
= µ̂+

µ̂2

0.2023
= µ̂+ 4.94 µ̂2

I Output degrees of freedom for deviance are wrong because we
used weights=Freq instead of a data frame with
159 + 1149 = 1308 rows. Fitted model unchanged.
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This slide and the next (output of summary(hom.poi2)) can be ignored.

> homicide2 <- homicide[rep(1:14, homicide$Freq),]

> homicide2$Freq <- NULL

> homicide2$ybar <- NULL

> head(homicide2)

nvics race

1 0 Black

1.1 0 Black

1.2 0 Black

1.3 0 Black

1.4 0 Black

1.5 0 Black

> hom.poi2 <-

glm(nvics ~ race, data=homicide2, family=poisson)

> summary(hom.poi2)
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Call:

glm(formula = nvics ~ race, family = poisson, data = homicide2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.02 -0.43 -0.43 -0.43 6.19

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.3832 0.0971 -24.5 <2e-16

raceBlack 1.7331 0.1466 11.8 <2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 962.80 on 1307 degrees of freedom

Residual deviance: 844.71 on 1306 degrees of freedom

AIC: 1122

Number of Fisher Scoring iterations: 6
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Remarks

I When Y is a count, overdispersion relative to Poisson is common.
Safest strategy is to use neg. bin. model or some other method that
allows for overdispersion (e.g., quasi-Poisson GLM).

I May also have zero-inflated counts (excess of zeros relative to
Poisson distribution). VGAM and other packages contain code for
fitting ZIP (zero-inflated Poisson) and hurdle models.
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Models for Rates

When yi have different bases
(e.g., number murders for cities with different pop. sizes)
more relevant to model rate at which events occur.

Let y = count with base t. Sample rate is
y

t
.

E

(
Y

t

)
=
µ

t

Loglinear model log
(
µ

t

)
= α+ βx

i.e., log(µ) − log(t) = α+ βx.

log(t) is an offset.

See pp. 82–84 of text for discussion.
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British Train Accidents over Time

Have collisions between trains and road vehicles become more
prevalent over time?

Total number of train-km (in millions) varies from year to year.

Model annual rate of train-road collisions per million train-km with
t = annual no. of train-km and x = no. of years since 1975.

> data(traincollisions)

> trains.loglin <-

glm(TrRd ~ I(Year-1975), offset = log(KM),

family=poisson, data=traincollisions)

> summary(trains.loglin)
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Call:

glm(formula = TrRd ~ I(Year - 1975), family = poisson, data = traincollisions,

offset = log(KM))

Deviance Residuals:

Min 1Q Median 3Q Max

-2.058 -0.783 -0.083 0.377 3.387

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.2114 0.1589 -26.50 <2e-16

I(Year - 1975) -0.0329 0.0108 -3.06 0.0022

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 47.376 on 28 degrees of freedom

Residual deviance: 37.853 on 27 degrees of freedom

AIC: 133.5

Number of Fisher Scoring iterations: 5
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British Train Accidents (ctd)

log
(
µ̂

t

)
= −4.21 − 0.0329 x

µ̂

t
= exp

(
−4.21 − 0.0329x

)
= e

−4.21
(e

−0.0329
)x

= (0.0148)(0.968)x

I Rate estimated to decrease by 1 − 0.968 = 0.032 = 3.2% per yr
from 1975 to 2003.

I Est. rate for 1975 (x = 0) is 0.0148 per million km (15 per billion).

I Est. rate for 2003 (x = 28) is 0.0059 per million km (6 per billion).

I Overdispersion? Try negative binomial. Similar fit w/ SEs and
p-values slightly larger.

> trains.nb <-

glm.nb(TrRd ~ I(Year-1975) + offset(log(KM)),

data=traincollisions)
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> attach(traincollisions)

> plot(Year, 1000*TrRd/KM, ylim=c(0,1000*max(TrRd/KM)),

ylab="Collisions per Billion Train-Kilometers")

> curve(1000*exp(-4.21 - 0.0329*(x-1975)), add=TRUE)

> detach(traincollisions)
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4. Logistic Regression
Simple Logistic Regression

Y = 0 or 1

π = Pr(Y = 1)

logit
[
π(x)

]
= log

(
π(x)

1 − π(x)

)
= α+ βx

Uses “logit” link for binomial Y. Equivalently,

π(x) =
exp(α+ βx)

1 + exp(α+ βx)

where exp(α+ βx) = eα+βx.
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4.1 Interpreting the Logistic Regression Model I

I If β > 0, then π(x) increases as x increases.
If β < 0, then π(x) decreases as x increases.

I If β = 0, then π(x) =
eα

1 + eα
constant in x (with π > 1

2 if α > 0).

I Curve can be approximated near a fixed point x by a straight line
describing rate of change in π(x). Slope is βπ(x)

[
1 − π(x)

]
. E.g.,

I at x with π(x) =
1
2

, slope = β · 1
2
· 1

2
=
β

4

I at x with π(x) = 0.1 or 0.9, slope = β(0.1)(0.9) = 0.09β

I Steepest slope where π(x) =
1
2
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4.1 Interpreting the Logistic Regression Model II

I If π(x) = 1
2 then

log
(

π(x)

1 − π(x)

)
= log

(
0.5
0.5

)
= log(1) = 0 = α+βx =⇒ x =

−α

β

I
1
|β|
≈ dist. between x values with π = 0.5 and π = 0.75 (or 0.25)

I ML fit obtained with iterative numerical methods.
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Horseshoe Crabs

Model the relationship between weight and the probability of having one
or more “satellites” for female horseshoe crabs.

Y =

{
1 if female crab has satellites

0 if no satellites

x = weight (kg) π(x) = probability of at least one satellite

Model: logit
[
π(x)

]
= α+ βx
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> data(horseshoecrabs)

> head(horseshoecrabs, 5)

Color Spine Width Weight Satellites

1 2 3 28.3 3.05 8

2 3 3 22.5 1.55 0

3 1 1 26.0 2.30 9

4 3 3 24.8 2.10 0

5 3 3 26.0 2.60 4

> nrow(horseshoecrabs)

[1] 173
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> summary(horseshoecrabs)

Color Spine Width

Min. :1.00 Min. :1.00 Min. :21.0

1st Qu.:2.00 1st Qu.:2.00 1st Qu.:24.9

Median :2.00 Median :3.00 Median :26.1

Mean :2.44 Mean :2.49 Mean :26.3

3rd Qu.:3.00 3rd Qu.:3.00 3rd Qu.:27.7

Max. :4.00 Max. :3.00 Max. :33.5

Weight Satellites

Min. :1.20 Min. : 0.00

1st Qu.:2.00 1st Qu.: 0.00

Median :2.35 Median : 2.00

Mean :2.44 Mean : 2.92

3rd Qu.:2.85 3rd Qu.: 5.00

Max. :5.20 Max. :15.00

> crabs.fit1 <- glm((Satellites > 0) ~ Weight,

family=binomial, data=horseshoecrabs)

> summary(crabs.fit1)
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Call:

glm(formula = (Satellites > 0) ~ Weight, family = binomial, data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.111 -1.075 0.543 0.912 1.629

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.695 0.880 -4.20 2.7e-05

Weight 1.815 0.377 4.82 1.4e-06

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 195.74 on 171 degrees of freedom

AIC: 199.7

Number of Fisher Scoring iterations: 4
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Horseshoe Crabs: Fitted Logistic Regression on Weight

ML fit: logit
[
π̂(x)

]
= −3.69 + 1.82 x

i.e., π̂(x) =
exp
(
−3.69 + 1.82x

)
1 + exp

(
−3.69 + 1.82x

)
E.g., at x = x = 2.44,

π̂ =
exp
{
−3.69 + (1.82)(2.44)

}
1 + exp

{
−3.69 + (1.82)(2.44)

} =
e0.729

1 + e0.729 =
2.07
3.07

= 0.675
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> xbar <- mean(horseshoecrabs$Weight)

> predict(crabs.fit1, data.frame(Weight=xbar), type="link")

1

0.72913

> predict(crabs.fit1, data.frame(Weight=xbar),

type="response")

1

0.67461

> ab <- coef(crabs.fit1); ld50 <- -ab[1]/ab[2]

> names(ld50) <- NULL; ld50

[1] 2.0355

> predict(crabs.fit1,

data.frame(Weight = ld50 + c(0, 0.1, 1)),

type="response")

1 2 3

0.50000 0.54525 0.85998
158



Horseshoe Crabs: Fitted Logistic Regression on Weight

I β̂ > 0, so π̂ ↑ as x ↑

I π̂ = 1
2 when x = −

α̂

β̂
=

3.69
1.82

= 2.04

I π̂ ≈ 3
4 when x = 2.04 +

1
β̂

= 2.04 +
1

1.82
= 2.04 + 0.55 = 2.59

I π̂ ≈ 1
4 when x = 2.04 − 0.55 = 1.48

I At x = 2.04, the estimated slope is

β̂π̂(1 − π̂) =
β̂

4
=

1.82
4

= 0.454,

i.e., for a small change in weight, ∆x,

π̂(2.04 + ∆x) ≈ π̂(2.04) + 0.454 (∆x) = 0.5 + 0.454 (∆x)
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> logit <- make.link("logit")

> ab <- coef(crabs.fit1)

> attach(horseshoecrabs)

> plot(Weight, (Satellites > 0), xlim=c(0,6), ylim=c(0,1),

xlab="Weight", ylab="Has Satellites")

> curve(logit$linkinv(ab[1] + ab[2]*x), add=TRUE)

> detach(horseshoecrabs)
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Horseshoe Crabs: Fitted Logistic Regression on Weight (ctd)

I Instantaneous rate of change of π̂(x) at x = 2.04 is the slope,
0.454 per kg change in weight. This means that for a small change
of ∆x kg in weight, π̂ changes by about 0.454 (∆x).

What is “small” here?

Sample std dev of weights is s = 0.58; half the interquartile range
is 0.43. Small should be small relative to these amounts.

∆x π̂(2.04 + ∆x) 0.5 + (0.454) (∆x) Approximation is
0.1 0.545 0.545 Good
1.0 0.86 0.954 Poor

> sd(horseshoecrabs$Weight)

[1] 0.57703

> IQR(horseshoecrabs$Weight)/2

[1] 0.425
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Horseshoe Crabs: Fitted Logistic Regression on Weight (ctd)

I At x = 5.2 (max. obs. wt.), π̂ = 0.997, and est. slope is
β̂π̂(1 − π̂) = (1.82)(0.997)(0.003) = 0.0058.

If x increases by 0.1 kg, then π̂ increases by
≈ (0.1)(0.0058) = 0.00058.

I Rate of change of π̂(x) varies with x.
E.g., it is 0.454 at x = 2.04 and 0.0058 at x = 5.2.
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Remarks

I Fitting linear probability model (binomial w/ identity link) fails in the
crabs example.

I If we assume Y ∼ Normal and fit linear model µ = α+ βx,

µ̂ = −0.415 + 0.323x

At x = 5.2, µ̂ = 1.53 !!! (estimated prob. of satellites)

I An alternative way to describe effect (not dependent on units of x)
is

π̂(UQ) − π̂(LQ)

For x = weight, LQ = 2.00, UQ = 2.85.
At x = 2.00, π̂ = 0.483; at x = 2.85, π̂ = 0.814.

=⇒ π̂ increases by 0.331 over middle half of x values.
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Odds Ratio Interpretation

Since log
( π

1 − π

)
= α+ βx, odds are

π

1 − π
=

{
eα+βx at x

eα+β(x+1) = eα+βxeβ at x+ 1

=⇒ odds at (x+ 1)
odds at x

=
����
eα+βxeβ

����
eα+βx

= eβ

More generally,

odds at (x+ ∆x)
odds at x

=
eα+β(x+∆x)

eα+βx
=

����
eα+βxeβ∆x

����
eα+βx

= eβ∆x

If β = 0, then eα+βx = eα and odds do not depend on x.
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Horseshoe Crabs (ctd)

β̂ = 1.82 =⇒ eβ̂ = e1.82 = 6.1

Estimated odds of having at least one satellite increase by a factor of
6.1 for each 1 kg increase in weight.

If weight increases by 0.1 kg, then estimated odds increase by factor

e
(1.82)(0.1)

= e0.182 = 1.20,

i.e., by 20 %.
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4.2 Inference for Logistic Regression
Confidence Intervals

Wald (1 − α)100% CI for β is β̂± zα/2 SE

Horseshoe Crabs (ctd)

95% CI for β:

1.82± (1.96) (0.377) = 1.82± 0.74 = (1.08, 2.55)

95% CI for eβ, multiplicative effect of a 1-kg increase in weight on odds:(
e1.08, e2.55) = (2.9, 12.9)

95% CI for e0.1β, multiplicative effect on odds of 100-gram increase, is(
e0.108, e0.255) = (1.11, 1.29)

Odds estimated to increase by at least 11 % and at most 29 %.
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Remarks

I Safer to use LR CI than Wald CI.

For crabs example, 95% LR CI for eβ is (see next slide)

(
e 1.11 , e 2.60 ) = (3.0, 13.4)

I Can also construct CI for π(x). The convenience function
predCI() in the icda package does the calculation described in
Section 4.2.6 of the text (see next slide).

I For crabs data, at x = 3.05 (first crab), π̂ = 0.863.
A 95% CI for π at x = 3.05 is (0.766, 0.924).

I For crabs data, at x = x = 2.44, π̂ = 0.675 .

A 95% CI for π at x = 2.44 is (0.592, 0.748) .
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> confint(crabs.fit1)

2.5 % 97.5 %

(Intercept) -5.5059 -2.0397

Weight 1.1138 2.5973

> exp(confint(crabs.fit1)[2,])

2.5 % 97.5 %

3.0459 13.4275

> crabs.predCI <- predCI(crabs.fit1)

> crabs.predCI[1,]

fit lwr upr

0.86312 0.76606 0.92391

> xbar <- mean(horseshoecrabs$Weight)

> predCI(crabs.fit1, newdata=data.frame(Weight=xbar))

fit lwr upr

1 0.67461 0.59213 0.74753
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Hypothesis Tests for β

H0 : β = 0 states that Y indep. of X (i.e., π(x) constant in x)
Ha : β 6= 0

Wald Test

z =
β̂

SE
=

1.815

0.377
= 4.82 or z2 = 23.2, df = 1 (chi-squared)

p-value < 0.0001 : very strong evidence that π ↑ as weight ↑

Likelihood ratio test

When β = 0, L0 = −112.88 (maximized log-likelihood under H0)

When β = β̂, L1 = −97.87

Test stat : −2(L0 − L1) = 30.02, df = 1 (chi-sq)

p-value < 0.0001
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> drop1(crabs.fit1, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ Weight

Df Deviance AIC LRT Pr(>Chi)

<none> 196 200

Weight 1 226 228 30 4.3e-08

> # anova(crabs.fit1, test="Chisq")
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Remark

Recall for a model M,

deviance = −2(LM − LS)

LS is log-likelihood under saturated model (perfect fit).

To compare model M0 with more complex model M1,

LR statistic = −2(L0 − L1)

= −2
[
(L0 − LS) − (L1 − LS)

]
=
[
−2(L0 − LS)

]
−
[
−2(L1 − LS)

]
= difference of (residual) deviances for two models

Horseshoe Crabs (ctd)

Model: logit[π(x)] = α+ βx (this is M1)

H0 : β = 0 =⇒ logit[π(x)] = α (this is M0)

diff. of deviances = 225.76 − 195.74 = 30.02 = LR stat.
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4.3–4.4 Multiple Logistic Regression

Y binary, π = Pr(Y = 1)

x1, x2, . . . , xk can be quantitative, qualitative (dummy variables), or both.

Model form is

logit(π) = α+ β1x1 + β2x2 + · · ·+ βkxk

or equivalently

π =
exp(α+ β1x1 + β2x2 + · · ·+ βkxk)

1 + exp(α+ β1x1 + β2x2 + · · ·+ βkxk)

βi = partial effect of xi controlling for other variables in model

eβi = cond. odds ratio at xi + 1 vs at xi keeping other x’s fixed

= multi. effect on odds of 1-unit incr. in xi, w/ other x’s fixed
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Horseshoe Crabs: Logistic Regression on Color and Weight

Y =

{
1 sampled female has at least 1 satellite

0 sampled female has no satellites

x = Weight

c = Color (qualitative w/ 4 categories)

c2 =

{
1 medium

0 o/w
c3 =

{
1 dark med

0 o/w
c4 =

{
1 dark

0 o/w

For “light medium” crabs, c2 = c3 = c4 = 0.

Original data set had color coded 1–4 for “light med”, “medium”, “dark
med”, and “dark”. R interprets this as a numeric variable, so we must
convert it to factor.
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Remark

To match textbook’s dummy variables (c1, c2, c3), use

> options(contrasts=c("contr.SAS","contr.poly"))

We are using R’s default, which is

> options(contrasts=c("contr.treatment","contr.poly"))

Textbook also uses crab width instead of weight.
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> horseshoecrabs <-

transform(horseshoecrabs, C = as.factor(Color))

> levels(horseshoecrabs$C)

[1] "1" "2" "3" "4"

> crabs.fit2 <-

glm((Satellites > 0) ~ C + Weight, family=binomial,

data=horseshoecrabs)

> summary(crabs.fit2)

Call:

glm(formula = (Satellites > 0) ~ C + Weight, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.191 -1.014 0.510 0.868 2.075
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Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.257 1.198 -2.72 0.0066

C2 0.145 0.736 0.20 0.8441

C3 -0.186 0.775 -0.24 0.8102

C4 -1.269 0.849 -1.50 0.1348

Weight 1.693 0.389 4.35 1.3e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 188.54 on 168 degrees of freedom

AIC: 198.5

Number of Fisher Scoring iterations: 4
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Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

Model:

logit
[

Pr(Y = 1)
]
= α+ β2c2 + β3c3 + β4c4 + βx

has ML fit

logit(π̂) = −3.26 + 0.14c2 − 0.19c3 − 1.27c4 + 1.69x

I For light med. female (c2 = c3 = c4 = 0),

logit(π̂) = −3.26 + 1.69x

At x = x = 2.44,

π̂ =
exp{−3.26 + 1.69(2.44)}

1 + exp{−3.26 + 1.69(2.44)}
= 0.704
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Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

I For medium female (c2 = 1, c3 = c4 = 0),

logit(π̂) = −3.26 + 0.14 + 1.69x = −3.11 + 1.69x

At x = x = 2.44, π̂ = 0.734.

I At each weight, estimate medium color females more likely than
light med. to have satellites:

β̂2 = 0.145 =⇒ eβ̂2 = e0.145 = 1.16

Estimated odds a medium color female has satellites are 1.16
times estimated odds for a light med. female of the same weight.

E.g., at x = 2.44,

odds for medium
odds for light-med

=
0.734/0.266
0.704/0.296

= 1.16
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Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

I How do we compare, e.g., dark (c2 = c3 = 0, c4 = 1) to medium
(c2 = 1, c3 = c4 = 0)?

β̂4 − β̂2 = −1.269 − 0.145 = −1.41 e−1.41 = 0.243

Estimated odds a dark crab has satellites are 0.24 times estimated
odds a medium crab of same weight has satellites.

Equivalently,

0.145 − (−1.269) = 1.41 e1.41 = 4.11 (= 1/0.243)

Estimated odds a medium crab has satellites are 4.11 times
estimated odds a dark crab of same weight has satellites.
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Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

I Model assumes no interaction between color and weight effects.

Coef. of x = Weight is same for each color (β̂ = 1.69).

For fixed color, estimated odds of satellites at weight (x+ 1) is
e1.69 = 5.4 times estimated odds at weight x.

Curves have same shape across colors, but shifted left or right.
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Horseshoecrabs: Logistic Regression on Color and Weight (ctd)

I Do we need color in the model?

H0 : β2 = β3 = β4 = 0 (given weight, Y indep. of color)

Likelihood-ratio statistic

−2(L0 − L1) = −2
[
(−97.9) − (−94.3)

]
= 7.19

or

diff. of deviances = 195.7 − 188.54 = 7.19

df = 171 − 168 = 3 p-value = 0.066

Some evidence (not strong) of a color effect given weight.

There is strong evidence of weight effect (β̂ = 1.69 has SE = 0.39).
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> anova(crabs.fit1, crabs.fit2, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ Weight

Model 2: (Satellites > 0) ~ C + Weight

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 171 196

2 168 188 3 7.19 0.066

> drop1(crabs.fit2, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ C + Weight

Df Deviance AIC LRT Pr(>Chi)

<none> 188 198

C 3 196 200 7.19 0.066

Weight 1 212 220 23.52 1.2e-06
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Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Other simple models are also adequate.

logit(π̂) =


−3.26 + 1.69x, med-light

−3.11 + 1.69x, med

−3.44 + 1.69x, med-dark

−4.53 + 1.69x, dark

suggests

logit(π) = α+ β1z+ β2x, z =

{
1, dark

0, o/w

ML gives β̂1 = −1.295 (SE = 0.522).

Estimated odds of satellites for a dark crab is e−1.295 = 0.27 times
estimated odds a non-dark crab of the same weight.
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> crabs.fit3 <-

glm((Satellites > 0) ~ I(Color == 4) + Weight,

family=binomial, data=horseshoecrabs)

> summary(crabs.fit3)

Call:

glm(formula = (Satellites > 0) ~ I(Color == 4) + Weight, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.155 -1.023 0.513 0.848 2.087

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.313 0.898 -3.69 0.00023

I(Color == 4)TRUE -1.295 0.522 -2.48 0.01311

Weight 1.729 0.383 4.52 6.2e-06
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 189.17 on 170 degrees of freedom

AIC: 195.2

Number of Fisher Scoring iterations: 4

> anova(crabs.fit3, crabs.fit2, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ I(Color == 4) + Weight

Model 2: (Satellites > 0) ~ C + Weight

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 189

2 168 188 2 0.629 0.73
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Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Compare model with 1 dummy for color to full model with 3 dummies.

H0 : simple model vs Ha : more complex model

Note H0 is β2 = β3 = 0 in more complex model.

LR stat = diff. in deviances = 189.17 − 188.54 = 0.63

df = 170 − 168 = 2 p-value = 0.73

Simpler model appears to be adequate.
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Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

How about interaction?

logit(π) = α+ β2c2 + β3c3 + β4c4 + βx+ γ2c2x+ γ3c3x+ γ4c4x

Color Dummies Weight Coef
light-med c2 = c3 = c4 = 0 β

medium c2 = 1, c3 = c4 = 0 β+ γ2

dark-med c3 = 1, c2 = c4 = 0 β+ γ3

dark c4 = 1, c2 = c3 = 0 β+ γ4

Testing H0: no interaction (γ2 = γ3 = γ4 = 0)

LR stat = 188.54 − 181.66 = 6.89 df = 3 p-value = 0.076

Weak evidence of interaction.

For easier interpretation, use simpler model (no interaction).
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> crabs.fit4 <-

update(crabs.fit2, . ~ C*Weight)

> deviance(crabs.fit4)

[1] 181.66

> anova(crabs.fit2, crabs.fit4, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ C + Weight

Model 2: (Satellites > 0) ~ C + Weight + C:Weight

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 168 188

2 165 182 3 6.89 0.076
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> drop1(crabs.fit4, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ C + Weight + C:Weight

Df Deviance AIC LRT Pr(>Chi)

<none> 182 198

C:Weight 3 188 198 6.89 0.076
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Quantitative Treatment of Ordinal Factors

Models with dummy variables for a factor treat that factor as qualitative
(nominal), i.e., order is ignored.

To treat as quantitative, assign scores such as (1, 2, 3, 4).

Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Recall that color was originally coded with numerical scores (1, 2, 3, 4).
Model:

logit(π) = α+ β1x1 + β2x2, x1 : weight, x2 : color score

> crabs.fit5 <-

glm((Satellites > 0) ~ Weight + Color,

family=binomial, data=horseshoecrabs)

> summary(crabs.fit5)
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Call:

glm(formula = (Satellites > 0) ~ Weight + Color, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.160 -1.000 0.524 0.882 1.911

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.032 1.116 -1.82 0.069

Weight 1.653 0.382 4.32 1.5e-05

Color -0.514 0.223 -2.30 0.021

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 190.27 on 170 degrees of freedom

AIC: 196.3

Number of Fisher Scoring iterations: 4
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Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

ML estimates and SEs are

α̂ = −2.03 (1.12) β̂1 = 1.65 (0.38) β̂2 = −0.51 (0.22)

logit(π̂) = −2.03 + 1.65x1 − 0.51x2

π̂ ↓ as Color ↑, controlling for weight.

Controlling for weight, odds of having at least one satellite estimated to
decrease by a factor of

e−0.51 = 0.60

for each 1-category increase in shell darkness
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Horseshoe Crabs: Logistic Regression on Color and Weight (ctd)

Does model treating color as nominal fit as well as model treating it as
qualitative?

H0 : simpler (ordinal) model holds

Ha : more complex (nominal) model holds

LR stat = −2(L0 − L1)

= diff in deviances

= 190.27 − 188.54 = 1.73, df = 2

Do not reject H0. Simpler model appears to be adequate.
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> anova(crabs.fit5, crabs.fit2, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ Weight + Color

Model 2: (Satellites > 0) ~ C + Weight

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 190

2 168 188 2 1.73 0.42
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FL Death Penalty Revisited
> dpflat

DeathPenalty Yes No

Victim Defendant

White White 53 414

Black 11 37

Black White 0 16

Black 4 139

Modeling approach: take death penalty (Yes/No) as response, race of
defendant and race of victim as explanatory variables.
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> deathpenalty

DeathPenalty Defendant Victim Freq

1 Yes White White 53

2 No White White 414

3 Yes Black White 11

4 No Black White 37

5 Yes White Black 0

6 No White Black 16

7 Yes Black Black 4

8 No Black Black 139

> library(reshape2)

> dp <- melt(deathpenalty)

> dpwide <- dcast(dp, ... ~ DeathPenalty)
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> dpwide

Defendant Victim variable Yes No

1 White White Freq 53 414

2 White Black Freq 0 16

3 Black White Freq 11 37

4 Black Black Freq 4 139

> dp.fit1 <-

glm(cbind(Yes,No) ~ Defendant + Victim, family=binomial,

data=dpwide)

> summary(dp.fit1)
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Call:

glm(formula = cbind(Yes, No) ~ Defendant + Victim, family = binomial,

data = dpwide)

Deviance Residuals:

1 2 3 4

0.0266 -0.6054 -0.0623 0.0938

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.059 0.146 -14.12 < 2e-16

DefendantBlack 0.868 0.367 2.36 0.018

VictimBlack -2.404 0.601 -4.00 6.2e-05

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 22.26591 on 3 degrees of freedom

Residual deviance: 0.37984 on 1 degrees of freedom

AIC: 19.3

Number of Fisher Scoring iterations: 4
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FL Death Penalty Revisited

π = Pr(Y = yes) death penalty

v =

{
1, victim black

0, victim white
d =

{
1, defendant black

0, defendant white

Model:

logit(π) = α+ β1d+ β2v

ML fit:

logit(π̂) = −2.06 + 0.87d− 2.40v

Controlling for race of victim, estimated odds of death penalty for black
defendant is e0.87 = 2.38 times estimated odd for white def.

95% CI for odds-ratio is

e0.868±1.96(0.367) = (e0.148, e1.59) = (1.16, 4.89)
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Remarks

I No interaction term means estimated odds ratio between Y and
I d same at each level of v (e0.868 = 2.38)

I v same at each level of d (e−2.40 = 0.09)

For white vic vs black vic: e2.40 = 1
0.09 = 11.1

Homogeneous association: odds ratio does not depend on level of
other explanatory variable.

I Test H0 : β1 = 0 (Y cond. indep. of d given v) vs Ha : β1 6= 0

z =
β̂

SE
=

0.868
0.367

= 2.36 p-value = 0.018

Evidence that controlling for race of victim, death penalty more
likely for black defendants than white.

LR stat = 5.39 − 0.38 = 5.01 df = 1 p-value = 0.025
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> drop1(dp.fit1, test="Chisq")

Single term deletions

Model:

cbind(Yes, No) ~ Defendant + Victim

Df Deviance AIC LRT Pr(>Chi)

<none> 0.38 19.3

Defendant 1 5.39 22.3 5.01 0.025

Victim 1 20.73 37.6 20.35 6.4e-06

> dp.fit2 <- update(dp.fit1, . ~ Victim)

> deviance(dp.fit2)

[1] 5.394

> df.residual(dp.fit2)

[1] 2
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Multi-Center Trials

A common application for logistic regression on multiple 2× 2 tables is
multi-center clinical trials:

Center Treatment Response
S F

1
1
2

2
1
2

...
...

...

K
1
2

logit
[
Pr(Y = 1)

]
= α+ β2c2 + · · ·+ βKcK + βx

Assumes odds ratio eβ is the same for each center.
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A model like this is commonly expressed in the form

logit
[
Pr(Y = 1)

]
= α+ βci + βx

βci is effect for center i (relative to first center).

To test H0 : β = 0 (no treatment effect) for several 2× 2 tables, could
use

I likelihood-ratio test

I Wald test

I Cochran-Mantel-Haenszel test (p. 114)

I generalization of Fisher’s exact test (pp. 158–159) (useful for small
samples)

205



Exam 1 Review: Binomial Distribution

I Recognize.

I Compute probabilities, mean, sd.

I Wald test and CI for a single proportion.

I Score test and CI for a single proportion.
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Exam 1 Review: Likelihood

I What is the likelihood function?

I What is MLE?

207



Exam 1 Review: Contingency Tables

I Joint, marginal, and conditional distributions.

I INDEPENDENCE.

I Sensitivity/specificity.

I Probability and ODDS.
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Exam 1 Review: 2× 2 Tables

I Measures of dependence:

I Diff in proportions: π1 − π2

I Relative risk:
π1

π2

I Odds ratio: θ =
π1/(1 − π1)

π2/(1 − π2)

I When are odds ratio and relative risk similar?

I Retrospective study: can estimate θ, not others.

I CIs for π1 − π2 and θ.
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Exam 1 Review: Testing Independence in I× J Tables I

I Estimated expected frequencies.

I Pearson’s chi-squared statistics: X2

I Likelihood-ratio statistic: G2

I df = (I− 1)(J− 1)

I Chi-square dist. has µ = df and σ =
√

2 df.
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Exam 1 Review: Testing Independence in I× J Tables II

I Examining sources of dependence

I Adjusted residuals (analyze dependence)

I Should be approx. N(0, 1) if all expected freqs > 5.

I If so, then |adj resid| > 2 (or 3 in big tables) meaningful.

I Partitioning chi-square

With a correct partition

I G2 stats add up (X2 approximately so)

I df’s add up to total df
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Exam 1 Review: Fisher’s Exact Test

I Test of independence (θ = 1) in 2× 2 tables.

I Conditions on row and column totals (i.e., treats them as fixed).

I Dist. of n11 under independence is hypergeometric.

I Expected value is
n1+n+1

n

I Large values of n11 suggest θ > 1; small values suggest θ < 1.

I Can be extended to I× J tables.
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Exam 1 Review: Three-Way Contingency Tables

I Three variables: X, Y, Z

I Partial tables

I Hold Z fixed

I Conditional odds ratios

I Simpson’s paradox

I Conditional independence: X and Y indep. in each partial table.
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Exam 1 Review: Generalized Linear Models I

I Random component: form of distribution for Y

I Systematic component

g(µ)︸︷︷︸
link

= α+ β1x1 + · · ·+ βkxk︸ ︷︷ ︸
linear predictor

I Common link functions

Identity: g(µ) = µ

Log: g(µ) = log(µ)

Logit: g(µ) = log
(

µ

1 − µ

)
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Exam 1 Review: Generalized Linear Models II

I Compute MLEs with iterative numerical algorithm.

I Test hypotheses about parameters using Wald or LR tests.

I CIs also based on Wald or LR tests.

I Special case: ordinary linear regression

I random component: Y is normally distributed

I link: identity link
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Exam 1 Review: GLMs for Binary Data I

I Ordinary linear model inappropriate for binary data

I Binary response not normally distributed

I Var(Y) depends on π(x) so least squares not optimal

I Identity link may give estimated probabilities that are negative or
greater than one.

I Linear probability model

I Binomial random component with identity link

I Advantage of identity link: easy interpretation of β

I Disadvantage of identity link: may give estimated probabilities that
are negative or greater than one
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Exam 1 Review: GLMs for Binary Data II

I Logistic regression model

I Binomial random component with logit link

I Logit link respects bounds on probabilities: must be between 0 and 1

I Interpret β in terms of odds and odds ratios.
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Exam 1 Review: GLMs for Count Data I

I Poisson log-linear model

I Random component: Poisson distribution

I Link: log

I In simple Poisson log-linear regression model

logµ = α+ βx

the mean is multiplied by a factor of eβ for each 1-unit increase in x.
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Exam 1 Review: GLMs for Count Data II
I Often have different bases for counts: need to model rate.

With log link, this leads to an offset.

If t is base for count Y, systematic component is

log
(
µ

t

)
= α+ βx =⇒ log(µ) = log(t)︸ ︷︷ ︸

offset

+α+ βx

I Overdispersion is common with count data

Poisson random component has Var(Y) = µ.
Often have Var(Y) > µ due to subject heterogeneity or other
source(s) of unexplained variation.

I One way to address overdispersion: use negative binomial
distribution as random component instead of Poisson.
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Exam 1 Review: Simple Logistic Regression Model
I Binomial GLM with logit link and a single numerical explan. variable

log
(

π

1 − π

)
= α+ βx i.e. π =

eα+βx

1 + eα+βx

π = prob. of ”success”
π

1 − π
= odds of success

I odds of success multiplied by eβ for each 1-unit increase in x.
Multiplied by eβ∆x if x changed by amount ∆x.

I π = 1/2 when x = −α/β.

I Rate of change (slope) of π at a fixed point x is βπ(x)
[
1 − π(x)

]
.

Steepest at x = −α/β where π = 1/2 and slope = β/4.
Flattest when π(x) close to 0 or 1.

I
1
|β|
≈ dist. between x values with π = 0.5 and π = 0.75 (or 0.25)
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Exam 1 Review: Inference in Simple Logistic Regression I

I Inference about β using Wald and LR tests and CIs.
LR methods preferred.

I Wald test and CI have usual form:

Test stat: z =
β̂− β0

SE

CI: β̂± zα/2 SE

I CI for eβ: first compute CI (L,U) for β, then take (eL, eU).
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Exam 1 Review: Inference in Simple Logistic Regression II

I LR test of H0 : β = 0:

LR test statistic = −2[L0 − L1]

= deviance0 − deviance1

df = 1

L0 = log-likelihood maximized over α with β = 0

L1 = log-likelihood maximized over α and β

= log-likelihood at MLEs α̂, β̂

deviance0 = ”null deviance” in R

deviance1 = ”residual deviance” in R
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Exam 1 Review: Multiple Logistic Regression

I Logistic regression with multiple explanatory variables

log
(

π

1 − π

)
= α+ β1x1 + · · ·+ βkxk

i.e.

π =
exp(α+ β1x1 + · · ·+ βkxk)

1 + exp(α+ β1x1 + · · ·+ βkxk)

I βi = partial effect of xi controlling for other variables in model

eβi = cond. odds ratio at xi + 1 vs at xi keeping other x’s fixed

= multi. effect on odds of 1-unit incr. in xi, w/ other x’s fixed

I Model may include dummies for qualitative explan. vars.

I If x1 is the dummy for a 2-level factor, then no interaction with other
explan. vars implies homogeneous assoc: odds ratio between Y
and x1 is the same (eβ1) at any fixed level of other explan. vars. 223



Exam 1 Review: Inference for Multiple Logistic Regression

I Usual Wald tests and CIs for individual βjs

I LR test to compare reduced model M0 to full model M1

H0: M0 holds, where M0 ⊂M1

LR test statistic = −2[L0 − L1]

= deviance0 − deviance1

df = num. free params in M1 − num. free params in M0

= residual df for M0 − residual df for M1

L0 = maximized log-likelihood for M0

L1 = maximized log-likelihood for M1

deviance0 = (residual) deviance for M0

deviance1 = (residual) deviance for M1
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Exam 1: Time and Place

Tuesday, Feb 21, 2012
8:30 a.m. – 9:25 a.m.
Griffin-Floyd Hall (FLO)
Room 100
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Ch 5: Building Logistic Regression Models

I Model selection

I Model checking

I Problems w/ sparse categorical data (estimators may be infinite)
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5.1 Strategies in Model Selection

Horseshoe Crab Study

Y = whether female crab has satellites (1 = yes, 0 = No).

Explanatory variables:

I Weight

I Width

I Color (ML, M, MD, D) w/ dummy vars c1, c2, c3

I Spine condition (3 categories) w/ dummy vars s1, s2
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> horseshoecrabs <-

transform(horseshoecrabs,

C = as.factor(Color),

S = as.factor(Spine))

> options(contrasts=c("contr.SAS","contr.poly"))

> crabs.fitall <-

glm((Satellites > 0) ~ C + S + Weight + Width,

family=binomial, data=horseshoecrabs)

> summary(crabs.fitall)
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Call:

glm(formula = (Satellites > 0) ~ C + S + Weight + Width, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.198 -0.942 0.485 0.849 2.120

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -9.273 3.838 -2.42 0.0157

C1 1.609 0.936 1.72 0.0855

C2 1.506 0.567 2.66 0.0079

C3 1.120 0.593 1.89 0.0591

S1 -0.400 0.503 -0.80 0.4259

S2 -0.496 0.629 -0.79 0.4302

Weight 0.826 0.704 1.17 0.2407

Width 0.263 0.195 1.35 0.1779
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 185.20 on 165 degrees of freedom

AIC: 201.2

Number of Fisher Scoring iterations: 4
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Horseshoe Crab Study

Consider model for crabs:

logit
[
Pr(Y = 1)

]
= α+ β1c1 + β2c2 + β3c3 + β4s1 + β5s2 + β6 weight + β7 width

LR test of H0 : β1 = β2 = · · · = β7 = 0 has test statistic

−2(L0 − L1) = difference of deviances = 225.8 − 185.2 = 40.6

df = 7 p-value < 0.0001

Strong evidence at least one predictor assoc. w/ presence of satellites.

But look back at Wald tests for partial effects of weight and width.
Or better, look at LR tests of all partial effects (next slide).
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> drop1(crabs.fitall, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ C + S + Weight + Width

Df Deviance AIC LRT Pr(>Chi)

<none> 185 201

C 3 193 203 7.60 0.055

S 2 186 198 1.01 0.604

Weight 1 187 201 1.41 0.235

Width 1 187 201 1.80 0.180

232



Multicollinearity

Multicollinearity (strong correlations among predictors) plays havoc with
GLMs just as it does with LMs.

E.g., Corr(width, weight) = 0.89.

Is partial effect of either one relevant?
Sufficient to pick one of these for a model.

> attach(horseshoecrabs)

> cor(Weight, Width)

[1] 0.88687

> plot(Width, Weight)

> detach(horseshoecrabs)
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Backward Elimination

I Use W = width, C = color, S = spine as predictors.

I Start with complex model, including all interactions, say.

I Drop “least significant” (i.e., largest p-value) variable among
highest-order terms.

I Refit model.

I Continue until all variables left are “significant”.

Note: If testing many interactions, simpler and possibly better to begin
by testing all at one time as on next slide.
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> crabs.fit1 <-

glm((Satellites > 0) ~ C*S*Width,

family=binomial, data=horseshoecrabs)

> crabs.fit2 <- update(crabs.fit1, . ~ C + S + Width)

> anova(crabs.fit2, crabs.fit1, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ C + S + Width

Model 2: (Satellites > 0) ~ C * S * Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 166 187

2 152 170 14 16.2 0.3
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Horseshoe Crabs: Backward Elimination

H0: Model C+ S+W holds (has 3 parameters for C, 2 for S, 1 for W)

Ha: Model C ∗ S ∗W holds, where

C ∗ S ∗W =

C+ S+W + (C× S) + (C×W) + (S×W) + (C× S×W)

LR stat = diff. in deviances = 186.6 − 170.4 = 16.2

df = 166 − 152 = 14 p-value = 0.30

Simpler model C+ S+W appears to be adequate.
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Remark

df = 14 on previous slide is unexpected. Model C ∗ S ∗W has
3× 2 = 6 parameters for C× S interaction,
3× 1 = 3 for C×W,
2× 1 = 2 for S×W, and
3× 2× 1 = 6 for C× S×W,
so 6 + 3 + 2 + 6 = 17 more parameters than model C+ S+W.
However, 3 combinations of C and S have only one obs. each, so 3 of
the C× S×W interaction coef.’s cannot be estimated.

> with(horseshoecrabs, table(C,S))

S

C 1 2 3

1 9 2 1

2 24 8 63

3 3 4 37

4 1 1 20
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Remark

In this example, we end up with the same model if we eliminate higher
order interactions 1 at a time. Try the following sequence of commands
to see this.

> drop1(crabs.fit1, test="Chisq")

> crabs.fit1a <-

update(crabs.fit1, . ~ . - C:S:Width)

> drop1(crabs.fit1a, test="Chisq")

> crabs.fit1b <- update(crabs.fit1a, . ~ . - S:Width)

> drop1(crabs.fit1b, test="Chisq")

> crabs.fit1c <- update(crabs.fit1b, . ~ . - C:Width)

> drop1(crabs.fit1c, test="Chisq")
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Horseshoe Crabs: Backward Elimination (ctd)

At next stage, S can be dropped from model C+ S+W:

diff. in deviances = 187.46 − 186.61 = 0.85, df = 2

> drop1(crabs.fit2, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ C + S + Width

Df Deviance AIC LRT Pr(>Chi)

<none> 187 201

C 3 194 202 7.81 0.05

S 2 188 198 0.85 0.66

Width 1 209 221 22.22 2.4e-06
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> ## crabs.fit3 <- update(crabs.fit2, . ~ . - S)

> crabs.fit3 <- update(crabs.fit2, . ~ C + Width)

> deviance(crabs.fit3)

[1] 187.46

> deviance(crabs.fit2)

[1] 186.61

> anova(crabs.fit3, crabs.fit2, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ C + Width

Model 2: (Satellites > 0) ~ C + S + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 168 188

2 166 187 2 0.845 0.66
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> drop1(crabs.fit3, test="Chisq")

Single term deletions

Model:

(Satellites > 0) ~ C + Width

Df Deviance AIC LRT Pr(>Chi)

<none> 188 198

C 3 194 198 7.0 0.072

Width 1 212 220 24.6 7e-07

> summary(crabs.fit3)
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Call:

glm(formula = (Satellites > 0) ~ C + Width, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.112 -0.985 0.524 0.851 2.141

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.715 2.762 -4.60 4.1e-06

C1 1.330 0.853 1.56 0.119

C2 1.402 0.548 2.56 0.011

C3 1.106 0.592 1.87 0.062

Width 0.468 0.106 4.43 9.3e-06

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 225.76 on 172 degrees of freedom

Residual deviance: 187.46 on 168 degrees of freedom

AIC: 197.5

Number of Fisher Scoring iterations: 4
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Horseshoe Crabs: Backward Elimination (ctd)

Results in model fit

logit(π̂) = −12.7 + 1.3c1 + 1.4c2 + 1.1c3 + 0.47 width

Forcing β1 = β2 = β3 gives

logit(π̂) = −13.0 + 1.3c+ 0.48 width

where

c =

{
1, if color ML, M, MD,

0, if color D.
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> crabs.fit4 <- update(crabs.fit3, . ~ I(C == "4") + Width)

> anova(crabs.fit4, crabs.fit3, test="Chisq")

Analysis of Deviance Table

Model 1: (Satellites > 0) ~ I(C == "4") + Width

Model 2: (Satellites > 0) ~ C + Width

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 170 188

2 168 188 2 0.501 0.78

> summary(crabs.fit4)
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Call:

glm(formula = (Satellites > 0) ~ I(C == "4") + Width, family = binomial,

data = horseshoecrabs)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.082 -0.993 0.527 0.861 2.155

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.980 2.727 -4.76 1.9e-06

I(C == "4")FALSE 1.301 0.526 2.47 0.013

Width 0.478 0.104 4.59 4.4e-06

(Dispersion parameter for binomial family taken to be 1)
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Horseshoe Crabs Study

Conclude:

I Controlling for width, estimated odds of satellite for nondark crabs
equal e1.3 = 3.7 times est’d odds for dark crabs.

95%CI : e1.301±1.96(0.526) =
(
e0.270, e2.33) = (1.3, 10.3)

I Given color (nondark or dark), est’d odds of satellite multiplied by
e0.478 = 1.6 for each 1 cm increase in width.

95%CI : e0.478±1.96(0.104) =
(
e0.274, e0.682) = (1.3, 2.0)
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Criteria for Selecting a Model I

I Use theory, other research as guide.

I Parsimony (simplicity) is good.

I Can use a model selection criterion to choose among models.
Most popular is Akaiki information criterion (AIC).

Choose model with minimum AIC where

AIC = −2L+ 2(number of model parameters)

with L = log-likelihood.

I For exploratory purposes, can use automated procedure such as
backward elimination, but not generally recommended.

R function step() will do stepwise selection procedures (forward,
backward, or both).
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Criteria for Selecting a Model II

I One published simulation study suggests > 10 outcomes of each
type (S or F) per “predictor” (count dummy variables for factors).

Example: n = 1000, (Y = 1) 30 times, (Y = 0) 970 times

Model should contain 6 30
10 = 3 predictors.

Example: n = 173 crabs, (Y = 1) 111 crabs, (Y = 0) 62 crabs

Use 6 62
10 ≈ 6 predictors.

I Can further check fit with residuals for grouped data, influence
measures, cross validation.
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Summarizing Predictive Power
A Correlation

For binary Y, can summarize predictive power with sample correlation of
Y and π̂.

Model Correlation
color 0.285
width 0.402
color + width 0.452
dark + width 0.447
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> crabs.color <- glm((Satellites > 0) ~ C, family=binomial,

data=horseshoecrabs)

> crabs.width <- update(crabs.color, . ~ Width)

> crabs.color.width <- update(crabs.color, . ~ C + Width)

> crabs.dark.width <-

update(crabs.color, . ~ I(C == "4") + Width)

> y <- as.numeric(horseshoecrabs$Satellites > 0)
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> pihat <- predict(crabs.color, type="response")

> cor(y,pihat)

[1] 0.28526

> pihat <- predict(crabs.width, type="response")

> cor(y,pihat)

[1] 0.40198

> pihat <- predict(crabs.color.width, type="response")

> cor(y,pihat)

[1] 0.45221

> pihat <- predict(crabs.dark.width, type="response")

> cor(y,pihat)

[1] 0.44697

253



Summarizing Predictive Power
Classification Tables

Predict ŷ = 1 if π̂ > 0.50 and ŷ = 0 if π̂ < 0.50.

Horseshoe Crabs with Width and Color as Predictors

Predicted
Actual ŷ = 1 ŷ = 0 Total
y = 1 96 15 111
y = 0 31 31 62

Sensitivity = Pr(Ŷ = 1|Y = 1) ≈ 96
111

= 0.86

Specificity = Pr(Ŷ = 0|Y = 0) ≈ 31
62

= 0.50

Pr(correct classification) ≈ 96 + 31
173

= 0.73
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> pihat <- predict(crabs.color.width, type="response")

> yhat <- as.numeric(pihat > 0.50)

> y <- as.numeric(horseshoecrabs$Satellites > 0)

> table(y, yhat)

yhat

y 0 1

0 31 31

1 15 96

> addmargins(table(y, yhat), 2)

yhat

y 0 1 Sum

0 31 31 62

1 15 96 111
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Remark

Table 5.3 in text actually produced by (approximate) leave-one-out
cross-validation, which gives more realistic estimates. For i = 1, . . . ,n:

1. Fit the model to the data leaving out ith obs.

2. Use fitted model and xi to compute π̂(i).

3. Predict ŷi = 1 if π̂(i) > 0.50 and ŷi = 0 if π̂(i) < 0.50.

Predicted
Actual ŷ = 1 ŷ = 0 Total
y = 1 94 17 111
y = 0 34 28 62

Sensitivity = Pr(Ŷ = 1|Y = 1) ≈ 94
111

= 0.85

Specificity = Pr(Ŷ = 0|Y = 0) ≈ 28
62

= 0.45

Pr(correct classification) ≈ 94 + 28
173

= 0.705
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> pihat <- vector(length=173)

> for (i in 1:173) {

pihat[i] <-

predict(update(crabs.color.width, subset=-i),

newdata=horseshoecrabs[i,], type="response")

}

> yhat <- as.numeric(pihat > 0.50)

> y <- as.numeric(horseshoecrabs$Satellites > 0)

> confusion <- table(y, yhat)

> confusion

yhat

y 0 1

0 28 34

1 17 94
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> prop.table(confusion, 1)

yhat

y 0 1

0 0.45161 0.54839

1 0.15315 0.84685

> sum(diag(confusion))/sum(confusion)

[1] 0.7052

> yhat <- as.numeric(pihat > 0.64)

> table(y,yhat)

yhat

y 0 1

0 42 20

1 37 74
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Could use cut-offs other than π0 = 0.5. E.g., for the crabs data,
π0 = 111

173 = 0.64 (π̂ for intercept-only model).

Predicted
Actual ŷ = 1 ŷ = 0 Total
y = 1 74 37 111
y = 0 20 42 62

Sensitivity = Pr(Ŷ = 1|Y = 1) ≈ 74
111

= 0.67

Specificity = Pr(Ŷ = 0|Y = 0) ≈ 42
62

= 0.68

Pr(correct classification) ≈ 74 + 42
173

= 0.67

Note: As cutoff π0 increases, sensitivity decreases and specificity
increases.
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Receiver Operating Characteristic (ROC) Curve

The receiver operating characteristic (ROC) curve plots sensitivity
against 1 − specificity as the cutoff π0 varies from 0 to 1.

I The higher the sensitivity for a given specificity, the better, so a
model with a higher ROC curve is preferred to one with a lower
ROC curve.

I The area under the ROC curve is a measure of predictive power,
called the concordance index, c.

I Models w/ bigger c have better predictive power.

I c = 1/2 is no better than random guessing.

I If feasible, use cross-validation.

The slide after the next shows ROC curve for horseshoecrab data using
color and width as predictors (c = 0.77).
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> library(epicalc)

> lroc(crabs.width, graph=FALSE)$auc

[1] 0.74244

> lroc(crabs.color, graph=FALSE)$auc

[1] 0.63862

> lroc(crabs.color.width, graph=FALSE)$auc

[1] 0.77136

> lroc(crabs.dark.width, graph=FALSE)$auc

[1] 0.77201

> lroc(crabs.color.width, grid=FALSE, title=TRUE)
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Model Checking

Is the chosen model adequate?

I Goodness of fit test.

Note that tests using deviance G2 and Pearson’s chi-square X2 are
generally limited to “non-sparse” contingency tables.

I Check whether fit improves by adding other predictors or
interactions between predictors.

LR statistic (change in deviance) is useful for comparing models
even when G2 is not valid as an overall test of fit.

I Residuals.
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Florida Death Penalty Data

Death Penalty
Victim Defendant Yes No n
Black Black 4 139 143

White 0 16 16
White Black 11 37 48

White 53 414 467

Model fit with d =

{
1, black def

0, white def
and v =

{
1, black vic

0, white vic

logit(π̂) = −2.06 + 0.87d− 2.40v

π̂ =
exp{−2.06 + 0.87d− 2.40v}

1 + exp{−2.06 + 0.87d− 2.40v}

E.g., for 467 cases with d = v = 0: π̂ = e−2.06

1+e−2.06 = 0.113.
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Florida Death Penalty Data (ctd)

Fitted counts for 467 cases with d = v = 0:

”Yes”: 467× 0.113 = 52.8 ”No”: 467× 0.887 = 414.2

Corresponding observed counts are 53 “yes” and 414 “no”.

Summarizing fit over 8 cells of table:

X2 =
∑ (observed − fitted)2

fitted
= 0.20

G2 = 2
∑

(observed) log
(

observed
fitted

)
= 0.38 = deviance

df = num. binomials − num. model params = 4 − 3 = 1

For H0: “model correctly specified”, G2 = 0.38, df = 1, p-value = 0.54.
No evidence of lack of fit.
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> formula(dp.fit1)

cbind(Yes, No) ~ Defendant + Victim

> deviance(dp.fit1)

[1] 0.37984

> df.residual(dp.fit1)

[1] 1

> pchisq(deviance(dp.fit1), 1, lower.tail=FALSE)

[1] 0.53769

> chisqstat(dp.fit1)

[1] 0.19779

> pchisq(chisqstat(dp.fit1), 1, lower.tail=FALSE)

[1] 0.65651
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Remarks

I Model assumes lack of interaction between d and v in effects on Y
(homogeneous association). Adding interaction term gives
saturated model, so goodness-of-fit test in this example is a test of
H0: “no interaction”. (Compare next slide to previous.)

I X2 usually recommended over G2 for testing goodness of fit.
I These tests only appropriate for grouped binary data with most

(> 80%) fitted cell counts “large” (e.g., µ̂i > 5).
I Questionable (?) in death penalty example, where µ̂ = 0.18 for

(v = bl, d = wh, Y = yes) and µ̂ = 3.82 for (v = wh, d = bl,
Y = yes).

I For continuous predictors or many predictors with small µ̂i,
distributions of X2 and G2 are not well approximated by χ2. For
better approx., can try grouping data before applying X2, G2.

I Hosmer-Lemeshow test forms groups using ranges of π̂ values.
Implemented in R packages LDdiag and MKmisc and perhaps
others.

I Or can try to group predictor values (if only 1 or 2 predictors).
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> dp.saturated <- update(dp.fit1, . ~ Defendant*Victim)

> anova(dp.fit1, dp.saturated, test="LRT")

Analysis of Deviance Table

Model 1: cbind(Yes, No) ~ Defendant + Victim

Model 2: cbind(Yes, No) ~ Defendant + Victim + Defendant:Victim

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1 0.38

2 0 0.00 1 0.38 0.54

> anova(dp.fit1, dp.saturated, test="Rao")

Analysis of Deviance Table

Model 1: cbind(Yes, No) ~ Defendant + Victim

Model 2: cbind(Yes, No) ~ Defendant + Victim + Defendant:Victim

Resid. Df Resid. Dev Df Deviance Rao Pr(>Chi)

1 1 0.38

2 0 0.00 1 0.38 0.198 0.66
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Residuals for Logit Models
At setting i of explanatory variables, let

yi = number of successes

ni = number of trials (preferably ”large”)

π̂i = estimated probability of success based on ML fit of model

Definition (Pearson residuals)

For a binomial GLM, the Pearson residuals are

ei =
yi − niπ̂i√
niπ̂i(1 − π̂i)

(
note that X2 =

∑
i

e2
i

)

I Dist. of ei is approx. N(0, v) when model holds (and ni large),
but v < 1.

I Use R function residuals() with option type="pearson".
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Definition (Standardized Pearson residual)

For a binomial GLM, the standardized Pearson residuals are

ri =
yi − niπ̂i

SE
=

yi − niπ̂i√
niπ̂i(1 − π̂i)(1 − hi)

=
ei√

1 − hi

where hi is the “leverage” of the ith obs.

I A.K.A. “adjusted” Pearson residual.

I ri approx. N(0, 1) when model holds (and ni large).
|ri| > 2 or 3 (approx.) suggests lack of fit.

I R function rstandard() provides standardized deviance residuals
by default. For standardized Pearson residuals specify
type="pearson".
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Example (Berkeley Graduate Admissions)

Data on p. 237 of text.

Y = admitted into grad school at UC Berkeley (1=yes, 0=no)

G = gender (g=1 female, g=0 male)

D = dept (A, B, C, D, E, F)

d1 =

{
1, dept B,

0, o/w,
. . . , d5 =

{
1, dept F,

0, o/w.

For dept. A, d1 = · · · = d5 = 0.

I Model

logit
[
Pr(Y = 1)

]
= α+ β1d1 + · · ·+ β5d5 + β6g

seems to fit poorly (G2 = 20.2, X2 = 18.8, df = 5).
Apparently there is gender× dept interaction.
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> data(UCBAdmissions)

> is.table(UCBAdmissions)

[1] TRUE

> dimnames(UCBAdmissions)

$Admit

[1] "Admitted" "Rejected"

$Gender

[1] "Male" "Female"

$Dept

[1] "A" "B" "C" "D" "E" "F"
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> ftable(UCBAdmissions,

row.vars="Dept", col.vars=c("Gender","Admit"))

Gender Male Female

Admit Admitted Rejected Admitted Rejected

Dept

A 512 313 89 19

B 353 207 17 8

C 120 205 202 391

D 138 279 131 244

E 53 138 94 299

F 22 351 24 317

273



Ignoring department is misleading (Simpson’s paradox):

> margin.table(UCBAdmissions, 2:1)

Admit

Gender Admitted Rejected

Male 1198 1493

Female 557 1278

> round(prop.table(margin.table(UCBAdmissions, 2:1), 1), 3)

Admit

Gender Admitted Rejected

Male 0.445 0.555

Female 0.304 0.696

> oddsratio(margin.table(UCBAdmissions, 2:1))

[1] 1.8411
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> UCBdf <- as.data.frame(UCBAdmissions)

> head(UCBdf)

Admit Gender Dept Freq

1 Admitted Male A 512

2 Rejected Male A 313

3 Admitted Female A 89

4 Rejected Female A 19

5 Admitted Male B 353

6 Rejected Male B 207
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> library(reshape2)

> UCBw <-

dcast(UCBdf, Gender + Dept ~ Admit, value.var="Freq")

> UCBw

Gender Dept Admitted Rejected

1 Male A 512 313

2 Male B 353 207

3 Male C 120 205

4 Male D 138 279

5 Male E 53 138

6 Male F 22 351

7 Female A 89 19

8 Female B 17 8

9 Female C 202 391

10 Female D 131 244

11 Female E 94 299

12 Female F 24 317
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> options(contrasts=c("contr.treatment","contr.poly"))

> UCB.fit1 <- glm(cbind(Admitted,Rejected) ~ Dept + Gender,

family=binomial, data=UCBw)

> summary(UCB.fit1)
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Call:

glm(formula = cbind(Admitted, Rejected) ~ Dept + Gender, family = binomial,

data = UCBw)

Deviance Residuals:

1 2 3 4 5 6

-1.249 -0.056 1.253 0.083 1.221 -0.208

7 8 9 10 11 12

3.719 0.271 -0.924 -0.086 -0.851 0.205

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5821 0.0690 8.44 <2e-16

DeptB -0.0434 0.1098 -0.40 0.69

DeptC -1.2626 0.1066 -11.84 <2e-16

DeptD -1.2946 0.1058 -12.23 <2e-16

DeptE -1.7393 0.1261 -13.79 <2e-16

DeptF -3.3065 0.1700 -19.45 <2e-16

GenderFemale 0.0999 0.0808 1.24 0.22
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(Dispersion parameter for binomial family taken to be 1)

Null deviance: 877.056 on 11 degrees of freedom

Residual deviance: 20.204 on 5 degrees of freedom

AIC: 103.1

Number of Fisher Scoring iterations: 4
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> chisqstat(UCB.fit1)

[1] 18.824

> df.residual(UCB.fit1)

[1] 5

> pchisq(chisqstat(UCB.fit1), df.residual(UCB.fit1),

lower.tail=FALSE)

[1] 0.0020725

> UCB.fit1.stdres <- rstandard(UCB.fit1, type="pearson")

> round(UCB.fit1.stdres, 2)

1 2 3 4 5 6 7 8 9

-4.03 -0.28 1.88 0.14 1.63 -0.30 4.03 0.28 -1.88

10 11 12

-0.14 -1.63 0.30
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> cbind(UCBw, "stdres" = round(UCB.fit1.stdres, 2))

Gender Dept Admitted Rejected stdres

1 Male A 512 313 -4.03

2 Male B 353 207 -0.28

3 Male C 120 205 1.88

4 Male D 138 279 0.14

5 Male E 53 138 1.63

6 Male F 22 351 -0.30

7 Female A 89 19 4.03

8 Female B 17 8 0.28

9 Female C 202 391 -1.88

10 Female D 131 244 -0.14

11 Female E 94 299 -1.63

12 Female F 24 317 0.30
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Example (Berkeley Admissions Ctd)

I Standardized resids suggest Dept. A as main source of lack of fit.

I Leaving out Dept. A, model with no interaction and no gender effect
fits well (G2 = 2.68, X2 = 2.69, df = 5).

I In Dept. A, sample odds-ratio of admission for females vs males is
θ̂ = 2.86 (odds of admission higher for females).

Note: Alternative way to express model with qualitative factors is, e.g.,

logit
[
Pr(Y = 1)

]
= α+ βXi + βZk ,

where βXi is effect of classification in category i of X.
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> UCB.fit2 <- glm(cbind(Admitted,Rejected) ~ Dept,

family=binomial, data=UCBw,

subset=(Dept != "A"))

> summary(UCB.fit2)
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Call:

glm(formula = cbind(Admitted, Rejected) ~ Dept, family = binomial,

data = UCBw, subset = (Dept != "A"))

Deviance Residuals:

2 3 4 5 6 8

-0.104 0.695 -0.376 0.812 -0.434 0.498

9 10 11 12

-0.518 0.395 -0.575 0.442

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.5429 0.0858 6.33 2.4e-10

DeptC -1.1586 0.1102 -10.52 < 2e-16

DeptD -1.2077 0.1139 -10.60 < 2e-16

DeptE -1.6324 0.1282 -12.73 < 2e-16

DeptF -3.2185 0.1749 -18.40 < 2e-16

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 539.4581 on 9 degrees of freedom

Residual deviance: 2.6815 on 5 degrees of freedom

AIC: 69.92

Number of Fisher Scoring iterations: 3
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> chisqstat(UCB.fit2)

[1] 2.6904

> UCB.fit3 <- update(UCB.fit2, . ~ Dept + Gender)

> anova(UCB.fit2, UCB.fit3, test="Chisq")

Analysis of Deviance Table

Model 1: cbind(Admitted, Rejected) ~ Dept

Model 2: cbind(Admitted, Rejected) ~ Dept + Gender

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 5 2.68

2 4 2.56 1 0.125 0.72
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> UCBAdmissions[,,"A"]

Gender

Admit Male Female

Admitted 512 89

Rejected 313 19

> oddsratio(UCBAdmissions[,,"A"])

[1] 0.34921

> 1/oddsratio(UCBAdmissions[,,"A"])

[1] 2.8636
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5.3 Effects of Sparse Data

Caution: Parameter estimates in logistic regression can be infinite.

Example: S F

X
1 8 2
0 10 0

Model:

log
(

Pr(S)
Pr(F)

)
= α+ βx =⇒ eβ̂ = sample odds-ratio =

8× 0
2× 10

= 0

β̂ = log(0) = −∞
Example: Text p. 155 for multi-center trial (5 ctrs, each w/ 2× 2 table).
Two centers had no successes under either treatment arm, so estimate
of center effect for these two centers is −∞.
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Infinite estimates exist when x-values where y = 1 can be “separated”
from x-values where y = 0.

Example: y = 0 for x < 50 and y = 1 for x > 50.

logit
[
Pr(Y = 1)

]
= α+ βx

has β̂ =∞ (roughly speaking).

Software may not realize this!

I SAS PROC GENMOD: β̂ = 3.84, SE = 15601054

I SAS PROC LOGISTIC gives warning.

I SPSS: β̂ = 1.83, SE = 674.8

I R: β̂ = 2.363, SE = 5805, with warning.
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Ch 6: Multicategory Logit Models

Y has J categories, J > 2.

Extensions of logistic regression for nominal and ordinal Y assume a
multinomial distribution for Y.

In R, we will fit these models using the VGAM package.
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6.1 Logit Models for Nominal Responses

Let πj = Pr(Y = j), j = 1, 2, . . . , J.

Baseline-category logits are

log
(
πj

πJ

)
, j = 1, 2, . . . , J− 1.

Baseline-category logit model has form

log
(
πj

πJ

)
= αj + βjx, j = 1, 2, . . . , J− 1.

Separate set of parameters (αj,βj) for each logit.

In R, use vglm function w/ multinomial family from VGAM package.
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Note:

I Category used as baseline (i.e., category J) is arbitrary and does
not affect model fit.
Important because order of categories for nominal response is
arbitrary.

I eβj is the multiplicative effect of a 1-unit increase in x on the
conditional odds of response j given that response is one of j or J.
I.e., on the odds of j vs the baseline J.

I Could also use this model with ordinal response variables, but this
would ignore information about ordering.
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Example (Income and Job Satisfaction from 1991 GSS)

Income Job Satisfaction

Dissat Little Moderate Very

<5K 2 4 13 3
5K–15K 2 6 22 4
15K–25K 0 1 15 8
>25K 0 3 13 8

Using x = income scores (3, 10, 20, 35), we fit the model

log
(
πj

π4

)
= αj + βjx, j = 1, 2, 3,

for J = 4 job satisfaction categories.
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> data(jobsatisfaction)

> head(jobsatisfaction)

Gender Income JobSat Freq

1 F 3 1 1

2 F 10 1 2

3 F 20 1 0

4 F 35 1 0

5 M 3 1 1

6 M 10 1 0

> jobsatisfaction <-

transform(jobsatisfaction, JobSat = factor(JobSat,

labels = c("Diss","Little","Mod","Very"),

ordered = TRUE))
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> library(reshape2)

> jobsatw <- dcast(jobsatisfaction, Income ~ JobSat, sum,

value.var = "Freq")

> jobsatw

Income Diss Little Mod Very

1 3 2 4 13 3

2 10 2 6 22 4

3 20 0 1 15 8

4 35 0 3 13 8
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> library(VGAM)

> jobsat.fit1 <-

vglm(cbind(Diss,Little,Mod,Very) ~ Income,

family=multinomial, data=jobsatw)

> coef(jobsat.fit1)

(Intercept):1 (Intercept):2 (Intercept):3

0.429801 0.456275 1.703929

Income:1 Income:2 Income:3

-0.185368 -0.054412 -0.037385
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> summary(jobsat.fit1)

Call:

vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income, family = multinomial,

data = jobsatw)

Pearson Residuals:

log(mu[,1]/mu[,4]) log(mu[,2]/mu[,4])

1 -0.311 0.129

2 0.700 0.554

3 -0.590 -1.428

4 -0.132 0.702

log(mu[,3]/mu[,4])

1 -0.1597

2 0.3435

3 -0.3038

4 0.0489
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Coefficients:

Estimate Std. Error z value

(Intercept):1 0.4298 0.9448 0.455

(Intercept):2 0.4563 0.6209 0.735

(Intercept):3 1.7039 0.4811 3.542

Income:1 -0.1854 0.1025 -1.808

Income:2 -0.0544 0.0311 -1.748

Income:3 -0.0374 0.0209 -1.790

Number of linear predictors: 3

Names of linear predictors:

log(mu[,1]/mu[,4]), log(mu[,2]/mu[,4]), log(mu[,3]/mu[,4])

Dispersion Parameter for multinomial family: 1

Residual deviance: 4.658 on 6 degrees of freedom
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Log-likelihood: -16.954 on 6 degrees of freedom

Number of iterations: 5
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Example (Income and Job Satisfaction)

Prediction equations (x = income score):

log
(
π̂1

π̂4

)
= 0.430 − 0.185x

log
(
π̂2

π̂4

)
= 0.456 − 0.054x

log
(
π̂3

π̂4

)
= 1.704 − 0.037x

Note:

I For each logit, estimated odds of being in less satisfied category
(vs very satisfied) decrease as x = income increases.

I Estimated odds of being “very dissatisfied” vs “very satisfied”

multiplied by e−0.185 = 0.83 for each 1K increase in income.
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I For a 10K increase in income (e.g., from row 2 to row 3), estimated
odds are multiplied by

e(10)(−0.185) = e−1.85 = 0.16

e.g., at x = 20, the estimated odds of being “very dissatisfied”
instead of “very satisfied” are just 0.16 times the corresponding
odds at x = 10.

I Model treats Y = job satisfaction as qualitative (nominal), but Y is
ordinal. (Later we will consider a model that treats Y as ordinal.)
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Estimating Response Probabilities

Equivalent form of baseline-category logit model is

πj =
eαj+βjx

1 + eα1+β1x + · · ·+ eαJ−1+βJ−1x
, j = 1, 2, . . . , J− 1,

πJ =
1

1 + eα1+β1x + · · ·+ eαJ−1+βJ−1x
.

Check that

πj

πJ
= eαj+βjx =⇒ log

(
πj

πJ

)
= αj + βjx

and

J∑
j=1

πj = 1.
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Example (Job Satisfaction)

π̂1 =
e0.430−0.185x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂2 =
e0.456−0.054x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂3 =
e1.704−0.037x

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

π̂4 =
1

1 + e0.430−0.185x + e0.456−0.054x + e1.704−0.037x

E.g., at x = 35, estimated probability of being “very satisfied” is

π̂4 =
1

1 + e0.430−0.185(35) + e0.456−0.054(35) + e1.704−0.037(35)
= 0.367

Similarly, π̂1 = 0.001, π̂2 = 0.086, π̂3 = 0.545. and

π̂1 + π̂2 + π̂3 + π̂4 = 1.
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I MLEs determine estimated effects for all pairs of categories, e.g.,

log
(
π̂1

π̂2

)
= log

(
π̂1

π̂4

)
− log

(
π̂2

π̂4

)
= (0.430 − 0.185x) − (0.456 − 0.054x)

= −0.026 − 0.131x

I Contingency table data, so can test goodness of fit.

(Residual) deviance is LR test statistic for comparing fitted model to
saturated model.

Deviance = 4.66, df = 6, p-value = 0.59 for H0: “model holds with
linear trends for income”. No evidence against the model.

There are 3× 4 = 12 logits to estimate (3 baseline category
logits at each of 4 income levels), so the saturated model has 12
parameters. The fitted model has 6 parameters, so
df = 12 − 6 = 6 .
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I Inference uses usual methods

I Wald CI for βj is β̂j ± zα/2 SE.

I Wald test of H0 : βj = 0 uses z =
β̂j

SE
or z2 ∼ χ2

1.

I For small n, better to use LR test and LR CI, if available.

I However, unlikely to be interested in a single coefficient, because
even a single numerical x has J− 1 coefficients.

More common to compare nested models where some variable(s)
are included/excluded. LR tests best for this.
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Example (Job Satisfaction)

Overall “global” test of income effect

H0 : β1 = β2 = β2 = 0

LR test obtained by fitting simpler intercept only model (implies job
satisfaction independent of income) to get null deviance. LR test stat is
difference in deviances. Df is difference in number of parameters, or
equivalently, difference in (residual) df.

deviance0 − deviance1 = 13.47 − 4.66 = 8.81

df = 6 − 3 = 9 − 6 = 3

p-value = 0.032

Evidence (p-value < .05) of dependence between job sat. and income.

Note that conclusion differs from that obtained with a simple chi-square
test of independence (even using LR statistic G2 = 13.47, df = 9,
p-value = 0.1426). What is different here that made this possible?
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> jobsat.fit2 <-

vglm(cbind(Diss,Little,Mod,Very) ~ 1,

family=multinomial, data=jobsatw)

> deviance(jobsat.fit2)

[1] 13.467

> df.residual(jobsat.fit2)

[1] 9

> pchisq(deviance(jobsat.fit2) - deviance(jobsat.fit1), 3,

lower.tail=FALSE)

[1] 0.031937

> summary(jobsat.fit2)
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Call:

vglm(formula = cbind(Diss, Little, Mod, Very) ~ 1, family = multinomial,

data = jobsatw)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -1.749 0.542 -3.23

(Intercept):2 -0.496 0.339 -1.46

(Intercept):3 1.008 0.244 4.14

Number of linear predictors: 3

Names of linear predictors:

log(mu[,1]/mu[,4]), log(mu[,2]/mu[,4]), log(mu[,3]/mu[,4])

Dispersion Parameter for multinomial family: 1

Residual deviance: 13.467 on 9 degrees of freedom

Log-likelihood: -21.359 on 9 degrees of freedom
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6.2 Cumulative Logit Models for Ordinal Responses

The cumulative probabilities are

Pr(Y 6 j) = π1 + · · ·+ πj, j = 1, 2, . . . , J.

The cumulative logits are

logit
[
Pr(Y 6 j)

]
= log

(
Pr(Y 6 j)

1 − Pr(Y 6 j)

)
= log

(
Pr(Y 6 j)
Pr(Y > j)

)
= log

(
π1 + · · ·+ πj
πj+1 + · · ·+ πJ

)
, j = 1, . . . , J − 1.

Cumulative logit model has form

logit
[
Pr(Y 6 j)

]
= αj + βx, j = 1, . . . , J− 1.
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Note:

I separate intercept αj for each cumulative logit

I same slope β for each cumulative logit

I eβ = multiplicative effect of 1-unit increase in x on odds that
(Y 6 j) (instead of (Y > j)).

odds(Y 6 j|x2)

odds(Y 6 j|x1)
= eβ(x2−x1)

= eβ when x2 = x1 + 1.

Also called proportional odds model.

I In R, use vglm function w/ cumulative family from VGAM package.
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Example (Income and Job Satisfaction from 1991 GSS)

Income Job Satisfaction

Dissat Little Moderate Very

<5K 2 4 13 3
5K–15K 2 6 22 4
15K–25K 0 1 15 8
>25K 0 3 13 8

Using x = income scores (3, 10, 20, 35), cumulative logit model fit is

logit
[
P̂r(Y 6 j)

]
= α̂j + β̂x = α̂j − 0.0449x , j = 1, 2, 3.

Odds of response at low end of job satisfaction scale decreases as
income increases.

Contingency table data. Model fits well: deviance = 6.75 , df = 8 .
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> jobsat.cl1 <-

vglm(cbind(Diss,Little,Mod,Very) ~ Income,

family=cumulative(parallel=TRUE), data=jobsatw)

> summary(jobsat.cl1)

Call:

vglm(formula = cbind(Diss, Little, Mod, Very) ~ Income, family = cumulative(parallel = TRUE),

data = jobsatw)

Pearson Residuals:

logit(P[Y<=1]) logit(P[Y<=2]) logit(P[Y<=3])

1 0.583 -0.0385 -0.178

2 0.300 0.2608 0.696

3 -0.675 -1.1793 -0.960

4 -0.782 1.1186 0.334
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Coefficients:

Estimate Std. Error z value

(Intercept):1 -2.5829 0.5584 -4.63

(Intercept):2 -0.8970 0.3550 -2.53

(Intercept):3 2.0751 0.4158 4.99

Income -0.0449 0.0175 -2.56

Number of linear predictors: 3

Names of linear predictors:

logit(P[Y<=1]), logit(P[Y<=2]), logit(P[Y<=3])

Dispersion Parameter for cumulative family: 1

Residual deviance: 6.749 on 8 degrees of freedom
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Estimated odds of satisfaction below any given level multiplied by

eβ̂ = e−0.0449 = 0.96

for each 1K increase in income (but x = 3, 10, 20, 35).

For 10K increase in income, estimated odds multiplied by

e10β̂ = e(10)(−0.0449) = e−0.449 = 0.64,

e.g., at $20K income, estimated odds of satsifaction below any given
level is 0.64 times the odds at $10K income.

Remark

If reverse ordering of response, β̂ changes sign but has same SE.

With very satisfied < moderately satisfied < little dissatisfied <
very dissatisfied:

β̂ = 0.0449, eβ̂ = 1.046 = 1/0.96.
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> jobsat.cl1r <-

vglm(cbind(Very,Mod,Little,Diss) ~ Income,

family=cumulative(parallel=TRUE), data=jobsatw)

> coef(jobsat.cl1r)

(Intercept):1 (Intercept):2 (Intercept):3

-2.075060 0.896979 2.582873

Income

0.044859
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To test H0 : β = 0 (job satisfaction indep. of income):

Wald: z =
β̂− 0

SE
=

−0.0449
0.0175

= −2.56 (z2 = 6.57, df = 1)

p-value = 0.0105

LR: deviance0 − deviance1 = 13.47 − 6.75 = 6.72 (df = 1)

p-value = 0.0095
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> jobsat.cl0 <-

vglm(cbind(Diss,Little,Mod,Very) ~ 1,

family=cumulative(parallel=TRUE), data=jobsatw)

> deviance(jobsat.cl0)

[1] 13.467

> deviance(jobsat.cl1)

[1] 6.7494

> pchisq(deviance(jobsat.cl0) - deviance(jobsat.cl1), 1,

lower.tail=FALSE)

[1] 0.009545
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Remark

Test based on cumlative logit (CL) model treats Y as ordinal, and
yielded stronger evidence of association (p-value ≈ 0.01) than obtained
when we treated:

I Y as nominal (BCL model): log
(
πj

π4

)
= αj + βjx.

Recall p-value = 0.032 for LR test (df = 3).

I X, Y both as nominal: Pearson’s chi-square test of indep. had
X2 = 11.5, df = 9, p-value = 0.24.
Alternatively, G2 = 13.47, p-value = 0.14 (G2 here equivalent to LR
test of all βj = 0 in BCL model w/ dummies for income).

The BCL and CL models also allow us to control for other variables, mix
quantitative and qualitative predictors, interaction terms, etc.

321



Political Ideology and Party Affiliation (GSS)

Ideology

Gender Party VLib SLib Mod SCon VCon

Female Dem 44 47 118 23 32
Rep 18 28 86 39 48

Male Dem 36 34 53 18 23
Rep 12 18 62 45 51

Y = political ideology (very liberal, slightly liberal, moderate,

slightly conservative, very conservative)

x1 = gender (1 = M, 0 = F)

x2 = political party (1 = Rep, 0 = Dem)

Cumulative Logit Model:

logit
[
Pr(Y 6 j)

]
= αj + β1x1 + β2x2, j = 1, 2, 3, 4.
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> data(ideology)

> head(ideology)

Party Gender Ideology Freq

1 Dem Female VLib 44

2 Rep Female VLib 18

3 Dem Male VLib 36

4 Rep Male VLib 12

5 Dem Female SLib 47

6 Rep Female SLib 28

> library(reshape2)

> ideow <- dcast(ideology, Gender + Party ~ Ideology,

value_var="Freq")
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> ideow

Gender Party VLib SLib Mod SCon VCon

1 Female Dem 44 47 118 23 32

2 Female Rep 18 28 86 39 48

3 Male Dem 36 34 53 18 23

4 Male Rep 12 18 62 45 51

> library(VGAM)

> ideo.cl1 <-

vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender + Party,

family=cumulative(parallel=TRUE), data=ideow)

> summary(ideo.cl1)

324



Call:

vglm(formula = cbind(VLib, SLib, Mod, SCon, VCon) ~ Gender +

Party, family = cumulative(parallel = TRUE), data = ideow)

Coefficients:

Estimate Std. Error z value

(Intercept):1 -1.452 0.123 -11.818

(Intercept):2 -0.458 0.106 -4.333

(Intercept):3 1.255 0.115 10.956

(Intercept):4 2.089 0.129 16.174

GenderMale -0.117 0.127 -0.921

PartyRep -0.964 0.129 -7.449

Number of linear predictors: 4

Names of linear predictors:

logit(P[Y<=1]), logit(P[Y<=2]), logit(P[Y<=3]), logit(P[Y<=4])
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Dispersion Parameter for cumulative family: 1

Residual deviance: 15.056 on 10 degrees of freedom

Log-likelihood: -47.415 on 10 degrees of freedom

> deviance(ideo.cl1)

[1] 15.056

> df.residual(ideo.cl1)

[1] 10

> pchisq(deviance(ideo.cl1), df.residual(ideo.cl1),

lower.tail = FALSE)

[1] 0.13005
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Political Ideology and Party Affiliation (ctd)

Cumulative logit model fit:

logit
[
P̂r(Y 6 j)

]
= α̂j − 0.117x1 − 0.964x2 , j = 1, 2, 3, 4.

I Controlling for gender, estimated odds that a Rep’s response is in
liberal direction (Y 6 j) rather than conservative (Y > j) are

e−0.964 = 0.38 times estimated odds for a Dem.
I Equivalently: controlling for gender, estimated odds that a Dem’s

response is in liberal direction (Y 6 j) rather than conservative

(Y > j) are e0.964 = 2.62 times estimated odds for a Rep.

I Statement holds for all j = 1, 2, 3, 4.

I 95% CI for true odds ratio is

e−0.964±(1.96)(0.129) = (0.30, 0.49)
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Political Ideology and Party Affiliation (ctd)

I Contingency table data. No evidence of lack of fit:

deviance = 15.1, df = 10, p-value = 0.13

I Test for party effect (controlling for gender), i.e., H0 : β2 = 0

Wald: z =
−0.964
0.129

= −7.45 (z2 = 55.49)

LR: deviance0 − deviance1 = 71.9 − 15.1 = 56.8 , df = 1

p-value < 0.0001 (either test)

Strong evidence that Republicans tend to be less liberal (more
conservative) than Democrats (for each gender).

I No evidence of gender effect (controlling for party).
(p-value ≈ 0.36 using either Wald or LR test).
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> ideo.cl2 <-

vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender,

family=cumulative(parallel=TRUE), data=ideow)

> deviance(ideo.cl2)

[1] 71.902

> df.residual(ideo.cl2)

[1] 11

> deviance(ideo.cl2) - deviance(ideo.cl1)

[1] 56.847

> pchisq(deviance(ideo.cl2) - deviance(ideo.cl1),

df.residual(ideo.cl2) - df.residual(ideo.cl1),

lower.tail=FALSE)

[1] 4.711e-14
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Party-Gender interaction?

> ideow

Gender Party VLib SLib Mod SCon VCon

1 Female Dem 44 47 118 23 32

2 Female Rep 18 28 86 39 48

3 Male Dem 36 34 53 18 23

4 Male Rep 12 18 62 45 51

> ideo.csum <- t(apply(ideow[,-(1:2)], 1, cumsum))

> ideo.csum

VLib SLib Mod SCon VCon

1 44 91 209 232 264

2 18 46 132 171 219

3 36 70 123 141 164

4 12 30 92 137 188

> ideo.cprop <- ideo.csum[,1:4]/ideo.csum[,5]

> ideo.ecl <- qlogis(ideo.cprop) # empirical cumul. logits

330



Ideology

E
m

pi
ric

al
 C

um
ul

at
iv

e 
Lo

gi
ts

VLib SLib Mod SCon

−
3

−
2

−
1

0
1

2

●

●

●

●

● Female Dem
Female Rep
Male Dem
Male Rep

331



> ideo.cl3 <-

vglm(cbind(VLib,SLib,Mod,SCon,VCon) ~ Gender*Party,

family=cumulative(parallel=TRUE), data=ideow)

> coef(summary(ideo.cl3))

Estimate Std. Error z value

(Intercept):1 -1.55209 0.13353 -11.62339

(Intercept):2 -0.55499 0.11703 -4.74225

(Intercept):3 1.16465 0.12337 9.44006

(Intercept):4 2.00121 0.13682 14.62633

GenderMale 0.14308 0.17936 0.79772

PartyRep -0.75621 0.16691 -4.53062

GenderMale:PartyRep -0.50913 0.25408 -2.00381
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> deviance(ideo.cl3)

[1] 11.063

> df.residual(ideo.cl3)

[1] 9

> deviance(ideo.cl1) - deviance(ideo.cl3)

[1] 3.9922

> pchisq(deviance(ideo.cl1) - deviance(ideo.cl3),

df.residual(ideo.cl1) - df.residual(ideo.cl3),

lower.tail=FALSE)

[1] 0.045712
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Political Ideology and Party Affiliation (w/ Interaction)

Plot of empirical logits suggest interaction between party and gender.
Model with interaction is

logit
[
Pr(Y 6 j)

]
= αj + β1x1 + β2x2 + β3x1x2, j = 1, 2, 3, 4

I ML fit:

logit
[
P̂r(Y 6 j)

]
= α̂j + 0.143x1 − 0.756x2 − 0.509x1x2

I Test for party × gender interaction (H0 : β3 = 0):

LR: deviance0 − deviance1 = 15.1 − 11.1 = 3.99

df = 1 p-value = 0.046

Some evidence (significant at 0.05 level) that effect of Party varies
with Gender (and vice versa).
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Political Ideology and Party Affiliation (w/ Interaction) (ctd)

I Estimated odds ratio for party effect (x2) is

e−0.756 = 0.47 when x1 = 0 (F)

e−0.756−0.509 = e−1.265 = 0.28 when x1 = 1 (M)

I Estimated odds ratio for gender effect (x1) is

e0.143 = 1.15 when x2 = 0 (Dem)

e0.143−0.509 = e−0.336 = 0.69 when x2 = 1 (Rep)

Among Dems, males tend to be more liberal than females.
Among Reps, males tend to be more conservative than females.
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Political Ideology and Party Affiliation (w/ Interaction) (ctd)

I P̂r(Y = 1) (very liberal) for male and female Republicans:

P̂r(Y 6 j) =
exp
(
α̂j + 0.143x1 − 0.756x2 − 0.509x1x2

)
1 + exp

(
α̂j + 0.143x1 − 0.756x2 − 0.509x1x2

)
For j = 1, α̂1 = −1.55.

I Male Republicans (x1 = 1, x2 = 1):

P̂r(Y = 1) =
e−1.55+0.143−0.756−0.509

1 + e−1.55+0.143−0.756−0.509 =
e−2.67

1 + e−2.67 = 0.065

I Female Republicans (x1 = 0, x2 = 1):

P̂r(Y = 1) =
e−1.55−0.756

1 + e−1.55−0.756 =
e−2.31

1 + e−2.31 = 0.090

I Similarly, P̂r(Y = 2) = P̂r(Y 6 2) − P̂r(Y 6 1), etc.

Note P̂r(Y = 5) = P̂r(Y 6 5) − P̂r(Y 6 4) = 1 − P̂r(Y 6 4).
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Remarks

I Reversing order of response categories changes signs of “slope”
estimates (cumulative odds ratio 7→ 1/cumulative odds ratio).

I For ordinal response, only two sensible orderings.
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Ch 8: Models for Matched Pairs
8.1 McNemar’s Test

Example (Crossover Study: Drug vs Placebo I)

86 subjects. Randomly assign each to either “drug then placebo” or
“placebo then drug”. Binary response (S,F) for each.

Treatment S F Total
Drug 61 25 86

Placebo 22 64 86

Methods so far (e.g., X2 and G2 test of indep, CI for θ, logistic regr)
assume independent samples. Inappropriate for dependent samples
(e.g., same subjects in each sample yielding matched pairs of
responses).
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Example (Crossover Study: Drug vs Placebo II)

To reflect dependence, display data as 86 obs rather than 2× 86 obs.

Placebo
S F

Drug
S 12 49 61
F 10 15 25

22 64 86

Population probabilities:

Placebo
S F

Drug
S π11 π12 π1+

F π21 π22 π2+

π+1 π+2 1

There is marginal homogeneity if π1+ = π+1.
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Under H0: marginal homogeneity,

π12

π12 + π21
=

1
2

.

Under H0, each of n∗ = n12 + n21 observations has probability 1/2 of
contributed to n12 and 1/2 of contributing to n21:

n12 ∼ Bin
(
n∗,

1
2

)
, mean =

n∗

2
, std dev =

√
n∗
(1

2

)(1
2

)
By normal approx. to binomial, for large n∗,

z =
n12 − n

∗/2√
n∗
(1

2

)(1
2

) =
n12 − n21√
n12 + n21

∼ N(0, 1)

or equivalently

z2 =
(n12 − n21)

2

n12 + n21
∼ χ2

1

Called McNemar’s test.
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Example (Crossover Study: Drug vs Placebo III)

Placebo
S F

Drug
S 12 49 61 (71%)
F 10 15 25

22 64 86
(26%)

z =
n12 − n21√
n12 + n21

=
49 − 10√
49 + 10

= 5.1 (z2 = 25.8, df = 1)

p-value < 0.0001 for H0 : π1+ = π+1 vs Ha : π1+ 6= π+1.

Extremely strong evidence that probability of success is higher for drug
than placebo.
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CI for π1+ − π+1

Estimate π1+ − π+1 by diff. of sample proportions, p1+ − p+1.

p1+ − p+1 =
n1+

n
−
n+1

n
=
n12 − n21

n

SE =
1
n

√
n12 + n21 −

(n12 − n21)2

n

Example (Crossover Study: Drug vs Placebo IV)

n11 n12

n21 n22

n
=

12 49
10 15

86

p1+ − p+1 =
49 − 10

86
=

39
86

= 0.453

SE =
1
86

√
49 + 10 −

(49 − 10)2

86
= 0.075

95%CI : 0.453± (1.96)(0.075) = 0.453± 0.146 = (0.31, 0.60)
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Aside: How is the SE derived?

(n11,n12,n21,n22) ∼ MN
(
n, (π11,π12,π21,π22)

)
=⇒

{
Var(nij) = nπij(1 − πij)

Cov(nij,ni ′,j ′) = −nπijπi ′j ′ if i 6= i ′ or j 6= j ′

Var(p1+ − p+1) = Var
(
n12 − n21

n

)
=

Var(n12 − n21)

n2

=
Var(n12) + Var(n21) − 2 Cov(n12,n21)

n2

=
nπ12(1 − π12) + nπ21(1 − π21) + 2nπ12π21

n2

=
π12 + π21 − (π2

12 − 2π12π21 + π
2
21)

n

=
π12 + π21 − (π12 − π21)

2

n
(ctd next frame)
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Var(p1+ − p+1) =
π12 + π21 − (π12 − π21)

2

n

V̂ar(p1+ − p+1) =
p12 + p21 − (p12 − p21)

2

n

=

n12
n + n21

n −
(
n12
n − n21

n

)2

n

=
n12
n + n21

n − (n12−n21)
2

n2

n
× n
n

=
n12 + n21 −

(n12−n21)
2

n

n2
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Another way:

Var(p1+ − p+1) = Var(p1+) + Var(p+1) − 2 Cov(p1+,p+1)

Var(p1+) =
π1+(1 − π1+)

n
, Var(p+1) =

π+1(1 − π+1)

n
,

Cov(p1+,p+1) = Cov
(
n1+

n
,
n+1

n

)
= Cov

(
n11 + n12

n
,
n11 + n21

n

)
=

1
n2 Cov

(
n11 + n12, n11 + n21

)
=

1
n2

[
Var(n11) + Cov(n11,n21) + Cov(n12,n11) + Cov(n12,n21)

]
=

1
n2

[
nπ11(1 − π11) − nπ11π21 − nπ12π11 − nπ12π21

]
=

1
n

[
π11(1 − π11 − π12 − π21︸ ︷︷ ︸

π22

) − π12π21
]

=
π11π22 − π12π21

n
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Thus,

Var(p1+ − p+1)

=
1
n

[
π1+(1 − π1+) + π+1(1 − π+1) − 2(π11π22 − π12π21)

]
Often matched-pairs exhibit positive association (odds-ratio greater than
1), i.e., π11π22 > π12π21, so covariance term is negative. Compare to
two independent samples of size n each.

Continuing,

V̂ar(p1+ − p+1)

=
1
n

[
p1+(1 − p1+) + p+1(1 − p+1) − 2(p11p22 − p12p21)

]
After algebra, this simplifies to expression given before.
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> crossover <-

matrix(c(12,10,49,15), nrow=2,

dimnames=list(Drug=c("S","F"),

Placebo=c("S","F")))

> crossover <- as.table(crossover)

> crossover

Placebo

Drug S F

S 12 49

F 10 15

> mcnemar.test(crossover, correct = FALSE)

McNemar's Chi-squared test

data: crossover

McNemar's chi-squared = 25.78, df = 1, p-value =

3.827e-07
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8.5 Rater Agreement

Example (Movie Reviews by Siskel and Ebert)

Ebert
Siskel Con Mixed Pro Total

Con 24 8 13 45
Mixed 8 13 11 32

Pro 10 9 64 83
Total 42 30 88 160

How strong is their agreement?
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8.5.5 Cohen’s Kappa

Let πij = Pr(S = i,E = j).

Pr(agree) = π11 + π22 + π33 =
∑
i

πii

= 1 if perfect agreement

If ratings are independent, then πii = πi+π+i and

Pr(agree|indep) =
∑
i

πi+π+i

Cohen’s kappa is

κ =
Pr(agree) − Pr(agree|indep)

1 − Pr(agree|indep)
=

∑
i πii −

∑
i πi+π+i

1 −
∑
i πi+π+i
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Note:

I κ = 0 if agreement only equals that expected under independence.

I κ = 1 if perfect agreement.

I Demoninator = maximum difference for numerator, attained if
agreement is perfect.
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Example (Siskel and Ebert (ctd))

∑
i

π̂ii =
24 + 13 + 64

160
= 0.63

∑
i

π̂i+π̂+i =

(
45
160

)(
42
160

)
+

(
32
160

)(
30
160

)
+

(
83
160

)(
88
160

)
= 0.40

κ̂ =
0.63 − 0.40

1 − 0.40
= 0.39

Moderate agreement: difference between observed agreement and
agreement expected under independence is about 40% of the maximum
possible difference.
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I 95% CI for κ:

κ̂± 1.96 SE = 0.39± (1.96)(0.06) = 0.39± 0.12 = (0.27, 0.51)

I For H0 : κ = 0,

z =
κ̂

SE
=

0.39
0.06

= 6.49

Very strong evidence that agreement is better than “chance”.

I A very simple cohens.kappa() is in the icda package. More
sophisticated versions can be found in several packages on CRAN
(e.g., irr, concord, and psy).
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> data(moviereviews)

> moviereviews

Ebert

Siskel Con Mixed Pro

Con 24 8 13

Mixed 8 13 11

Pro 10 9 64

> cohens.kappa(moviereviews)

$kappa

[1] 0.38884

$SE

[1] 0.059917
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Ch 9: Models for Correlated, Clustered Responses

Correlated responses occur in several ways, including:

I Repeated measures/longitudinal studies: repeated observations on
each subject.

I Multiple, matched sets of subjects.

I Children in the same family.

I Children in the same elementary school class (children within class,
class within school, school within district, . . . ).

I Fetuses from the same litter of mice.

Usual model forms apply (e.g., logistic regression for binary response,
cumulative logit for ordinal response), but model fitting must account for
dependence (e.g., from repeated measures on subjects) in order to get
appropriate standard errors and valid inferences.
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9.2 Generalized Estimating Equations (GEE) for Repeated Measures
I Specify model in usual way.

I Select a “working correlation” matrix for best guess about
correlation pattern between pairs of observations.

Ex: For T repeated responses, exchangeable correlation matrix is


Time 1 2 · · · T

1 1 ρ . . . ρ

2 ρ 1 . . . ρ
...

...
...

. . .
...

T ρ ρ . . . 1


I Fitting method gives estimates that are consistent even if

correlation structure is misspecified. Adjusts standard errors to
reflect actual observed depedendence.

I Available in R package gee and others.
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Crossover Study: Drug vs Placebo V

Placebo
S F

Drug
S 12 49 61
F 10 15 25

22 64 86

Model:

logit
[
Pr(Yt = 1)

]
= α+ βt, t =

{
1, drug

0, placebo

GEE fit:

logit
[
Pr(Yt = 1)

]
= −1.07 + 1.96t, SE(β̂) = 0.377 (“robust”)

Odds of S w/ drug estimated to be e1.96 = 7.1 times odds w/ placebo.
95% CI for odds ratio (for marginal probabilities) is

e1.96±(1.96)(0.377) = (e1.22, e2.70) = (3.4, 14.9)
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Note:

I Sample marginal odds ratio is θ̂ = (61/25)/(22/64) = 7.1
(log θ̂ = 1.96).

I With GEE approach, can also have “between-subject” explanatory
variables, e.g., gender, order of treatments.
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GEE is a “quasi-likelihood” method.

I No particular form assumed for joint distribution of (Y1, Y2, . . . ,YT )

I Hence, no likelihood function, no LR inference (LR test, LR CI).

I For responses (Y1, Y2, . . . ,YT ) at T times, we consider marginal
model that describes each Yt in terms of explanatory var’s.

I Alternative conditional model put terms in model for subjects,
effects apply conditional on subject, e.g.,

logit
[

Pr(Yit = 1)
]
= αi + βt (αi = effect for subject i)

{αi} commonly treated as “random effects” having a normal
distribution (Ch 10).
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> library(gee)

> crossover

Placebo

Drug S F

S 12 49

F 10 15

> cross.df <- data.frame(crossover)

> cross.df <-

transform(cross.df,

Drug = as.numeric(Drug=="S"),

Placebo = as.numeric(Placebo=="S"))

> cross.df

Drug Placebo Freq

1 1 1 12

2 0 1 10

3 1 0 49

4 0 0 15
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> Freq <- cross.df$Freq

> cross.df$Freq <- NULL

> cross.df <- cross.df[rep(1:4, Freq),]

> rm(Freq)

> head(cross.df)

Drug Placebo

1 1 1

1.1 1 1

1.2 1 1

1.3 1 1

1.4 1 1

1.5 1 1
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> rownames(cross.df) <- NULL

> head(cross.df)

Drug Placebo

1 1 1

2 1 1

3 1 1

4 1 1

5 1 1

6 1 1

> xtabs(~ Drug + Placebo, cross.df)

Placebo

Drug 0 1

0 15 10

1 49 12
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> dim(cross.df)

[1] 86 2

> cross.df$Subject <- factor(1:86)

> crossm <- melt(cross.df)

> head(crossm)

Subject variable value

1 1 Drug 1

2 2 Drug 1

3 3 Drug 1

4 4 Drug 1

5 5 Drug 1

6 6 Drug 1
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> ## VERY IMPORTANT: Data should be ordered by "cluster"

> crossm <- crossm[order(crossm$Subject),]

> head(crossm)

Subject variable value

1 1 Drug 1

87 1 Placebo 1

2 2 Drug 1

88 2 Placebo 1

3 3 Drug 1

89 3 Placebo 1

> names(crossm)[2:3] <- c("Treat","Resp")

> names(crossm)

[1] "Subject" "Treat" "Resp"

> crossm <-

transform(crossm, Treat=relevel(Treat, "Placebo"))

363



Note: the gee function has the annoying habit of printing out the starting
values used in its iterative algorithm. These values, obtained from glm,
are not the actual GEE estimates (unless the working correlation
structure is independence) and should be ignored.

> cross.gee1 <-

gee(Resp ~ Treat, id=Subject, data=crossm,

family=binomial, corstr="exchangeable")

(Intercept) TreatDrug

-1.0678 1.9598

> cross.gee2 <-

gee(Resp ~ Treat, id=Subject, data=crossm,

family=binomial, corstr="independence")

(Intercept) TreatDrug

-1.0678 1.9598
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> summary(cross.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Exchangeable

Call:

gee(formula = Resp ~ Treat, id = Subject, data = crossm, family = binomial,

corstr = "exchangeable")

Summary of Residuals:

Min 1Q Median 3Q Max

-0.70930 -0.25581 -0.25581 0.29070 0.74419
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Coefficients:

Estimate Naive S.E. Naive z Robust S.E.

(Intercept) -1.0678 0.24859 -4.2956 0.24714

TreatDrug 1.9598 0.37984 5.1596 0.37723

Robust z

(Intercept) -4.3207

TreatDrug 5.1953

Estimated Scale Parameter: 1.0118

Number of Iterations: 1

Working Correlation

[,1] [,2]

[1,] 1.00000 -0.21407

[2,] -0.21407 1.00000
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> coef(summary(cross.gee1))

Estimate Naive S.E. Naive z Robust S.E.

(Intercept) -1.0678 0.24859 -4.2956 0.24714

TreatDrug 1.9598 0.37984 5.1596 0.37723

Robust z

(Intercept) -4.3207

TreatDrug 5.1953

> coef(summary(cross.gee2))

Estimate Naive S.E. Naive z Robust S.E.

(Intercept) -1.0678 0.24859 -4.2956 0.24714

TreatDrug 1.9598 0.34475 5.6848 0.37723

Robust z

(Intercept) -4.3207

TreatDrug 5.1953
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Example (Depression I)

y = response on mental depression (normal, abnormal)
measured three times (after 1, 2, and 4 wks of treatment)
two drug treatments (standard, new)
two severity of initial diagnosis groups (mild, severe)

Is the rate of improvement better with the new drug?

Time Response Pattern
0 A A A A N N N N
1 A A N N A A N N
2 A N A N A N A N

Severity Drug
Mild Std 6 15 4 14 3 9 13 16

New 0 9 2 22 0 6 0 31
Severe Std 28 27 15 9 9 8 2 2

New 6 32 5 31 2 5 2 7
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Example (Depression II)

Sample Proportion Normal
Severity Drug Week 1 Week 2 Week 4

Mild Std 0.51 0.59 0.68
New 0.53 0.79 0.97

Severe Std 0.21 0.28 0.46
New 0.18 0.50 0.83

E.g., 0.51 = (3 + 9 + 13 + 16)/(6 + 15 + 4 + 14 + 3 + 9 + 13 + 16)
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Let

Yt = resp of randomly selected subj at time t (1 = norm, 0 = abnor)

s = severity of initial diagnosis (1 = severe, 0 = mild)

d = drug (1 = new, 0 = std)

t = time (0, 1, 2), which is log2(weeks of trt)

Model:

log
{

Pr(Yt = 1)
Pr(Yt = 0)

}
= α+ β1s+ β2d+ β3t

Assumes same rate of change β3 over time for each (s,d) combination.
Unrealistic?
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More realistic model permits time effect to differ by drug:

log
{

Pr(Yt = 1)
Pr(Yt = 0)

}
= α+ β1s+ β2d+ β3t+ β4dt

time effect =

{
β3 if d = 0 (std drug)

β3 + β4 if d = 1 (new drug)

GEE estimates: α̂ = −0.028

β̂1 = −1.31 β̂2 = −0.06 β̂3 = 0.48 β̂4 = 1.02

Test of H0: no interaction (β4 = 0) has

z =
β̂4

SE
=

1.02
0.188

= 5.42 (z2 = 29.4, df = 1)

Very strong evidence of faster improvement for new drug.
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I When initial diagnosis is severe, estimated odds of normal
response are e−1.31 = 0.27 times estimated odds when initial
diagnosis is mild, at each d× t combination.

I β̂2 = −0.06 is drug effect only at t = 0. e−0.06 = 0.94 ≈ 1, so
essentially no drug effect at t = 0 (after 1 week).

Drug effect at end of study (t = 2) estimated to be eβ̂2+2β̂4 = 7.2.

I Estimated time effects are

std drug(d = 0) : β̂3 = 0.48

new drug(d = 1) : β̂3 + β̂4 = 1.50

I Examined s× d and s× t interactions, but they were not
statistically significant.

I Started w/ exchangeable working correlation, but est’d ρ close to 0.
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> library(gee)

> data(depression)

> head(depression)

subject severity drug time response

1 1 mild std 0 normal

2 1 mild std 1 normal

3 1 mild std 2 normal

4 2 mild std 0 normal

5 2 mild std 1 normal

6 2 mild std 2 normal

> dep.gee1 <-

gee((response == "normal") ~ severity + drug*time,

id=subject, data=depression, family=binomial)

(Intercept) severitysevere drugnew

-0.027988 -1.313911 -0.059604

time drugnew:time

0.482412 1.017445
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> summary(dep.gee1)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Independent

Call:

gee(formula = (response == "normal") ~ severity + drug * time,

id = subject, data = depression, family = binomial)

Summary of Residuals:

Min 1Q Median 3Q Max

-0.948442 -0.406833 0.051558 0.388310 0.802422
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Coefficients:

Estimate Naive S.E. Naive z

(Intercept) -0.027988 0.16271 -0.17202

severitysevere -1.313911 0.14534 -9.04006

drugnew -0.059604 0.22058 -0.27021

time 0.482412 0.11392 4.23457

drugnew:time 1.017445 0.18741 5.42889

Robust S.E. Robust z

(Intercept) 0.17419 -0.16068

severitysevere 0.14598 -9.00034

drugnew 0.22854 -0.26080

time 0.11994 4.02228

drugnew:time 0.18769 5.42077
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Estimated Scale Parameter: 0.98541

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3]

[1,] 1 0 0

[2,] 0 1 0

[3,] 0 0 1

By way of illustration, the next few frames show bits and pieces of some
other gee fits to these data. Note that the working correlation matrix can
be "independence" (default), "exchangeable", "AR-M",
"stat M dep", "non stat M dep", "unstructured", and "fixed".
See the help for gee for details.
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> dep.gee2 <-

gee((response == "normal") ~ severity + drug*time,

id=subject, data=depression, family=binomial,

corstr="exchangeable")

(Intercept) severitysevere drugnew

-0.027988 -1.313911 -0.059604

time drugnew:time

0.482412 1.017445

> dep.gee2$working.correlation

[,1] [,2] [,3]

[1,] 1.0000000 -0.0034327 -0.0034327

[2,] -0.0034327 1.0000000 -0.0034327

[3,] -0.0034327 -0.0034327 1.0000000
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> coef(summary(dep.gee1))[,c(1,2,4)]

Estimate Naive S.E. Robust S.E.

(Intercept) -0.027988 0.16271 0.17419

severitysevere -1.313911 0.14534 0.14598

drugnew -0.059604 0.22058 0.22854

time 0.482412 0.11392 0.11994

drugnew:time 1.017445 0.18741 0.18769

> coef(summary(dep.gee2))[,c(1,2,4)]

Estimate Naive S.E. Robust S.E.

(Intercept) -0.028099 0.16255 0.17418

severitysevere -1.313910 0.14486 0.14596

drugnew -0.059267 0.22053 0.22856

time 0.482464 0.11412 0.11994

drugnew:time 1.017193 0.18771 0.18770
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> dep.gee3 <-

gee((response == "normal") ~ (severity + drug)*time,

id=subject, data=depression, family=binomial)

(Intercept) severitysevere

0.073547 -1.528703

drugnew time

-0.055304 0.358728

severitysevere:time drugnew:time

0.235006 1.001094

> round(coef(summary(dep.gee3))[,"Robust z"],2)

(Intercept) severitysevere

0.37 -6.55

drugnew time

-0.24 2.31

severitysevere:time drugnew:time

1.29 5.33
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Note:

I GEE have been generalized to multivariate categorical responses,
but software is still limited.

SAS’s PROC GENMOD will do GEE for cumulative logit models,
but, at last check, only with independence working correlations.

See insomnia study in Section 9.3.2 for an example.

I Missing data is not uncommon and can be very problematic unless
missing completely at random (MCAR): missingness unrelated to
response or any explanatory variables.

Missing at random (MAR) means missingness unrelated to
response after controlling for explanatory variables. Methods exist
to handle this and some other forms of missingness

Ignoring missing data leads to biased estimates.
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Analyzing Repeated Measurements and Other Clustered Data

Observations (Y1, Y2, . . . ,YT ) (e.g., T times).

1. Marginal Models (Ch. 9)

Simultaneously model each (marginal) E(Yt), t = 1, . . . , T .
Get standard errors that account for the actual dependence using
method such as GEE (generalized estimating equations).

Ex. Binary response Yt = 0 or 1, t = 1, 2 (matched pairs).

E(Yt) = Pr(Yt = 1)

Model: logit
[
Pr(Yt = 1)

]
= α+ βxt,

xt = value of explan. var. for tth obs.

Depression example (matched triplets): some explanatory variables
constant across t (severity and drug), others vary (time).
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2. Random Effects Models (Ch. 10)

Account for having multiple responses per subject (or “cluster”) by
putting a subject term in model.

Ex. Binary response Yt = 0 or 1.

Let Yit = response by subject i at time t.

Model: logit
[
Pr(Yit = 1)

]
= αi + βxit, t = 1, . . . , T

Intercept αi varies by subject.

large positive αi =⇒ large Pr(Yit = 1) each t
large negative αi =⇒ small Pr(Yit = 1) each t

Heterogeneous population =⇒ highly variable {αi}.

Problem: number of parameters > number of subjects.
Solution: treat {αi} as random rather than parameters (fixed).
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Assume a distribution for {αi}, e.g., αi ∼ N(α,σ2), i.e.,

αi = α+ ui, ui ∼ N(0,σ2)

where α is a fixed, unknown parameter.

Model: logit
[
Pr(Yit = 1)

]
= ui + α+ βxit

{ui} are random effects.
Parameters α and β are fixed effects.

Yi1, Yi2, . . . ,YiT conditionally independent given ui.
But marginally dependent: responses within subject more alike than
between subjects.

A generalized linear mixed model (GLMM) is a GLM with both fixed and
random effects.

Note that random effects {ui} are unobserved (not data).
Software must “integrate out” {ui} to get likelihood fcn, MLEs α̂, β̂, SE’s.
Also estimate σ2 and can “predict” {ui}.
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Example (Depression Study)

Time Response Pattern
0 A A A A N N N N
1 A A N N A A N N
2 A N A N A N A N

Severity Drug
Mild Std 6 15 4 14 3 9 13 16

New 0 9 2 22 0 6 0 31
Severe Std 28 27 15 9 9 8 2 2

New 6 32 5 31 2 5 2 7

Previously used GEE to fit “marginal model”

logit
[
Pr(Yt = 1)

]
= α+ β1s+ β2d+ β3t+ β4dt,

Yt = 1 (normal); s = 0, 1 (initial diagnosis.: mild vs severe);
t = log2(wks on trt); d = 0, 1 (drug: std vs new).
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Now use ML to fit “random effects model” (a.k.a., “mixed model”)

logit
[
Pr(Yit = 1)

]
= ui + α+ β1s+ β2d+ β3t+ β4dt.

Assume {ui} indep. N(0,σ2). Need to estimate σ2.

MLEs: σ̂ = 0.057 (σ̂2 = 0.00323), α̂ = −0.028

β̂1 = −1.31 β̂2 = −0.06 β̂3 = 0.48 β̂4 = 1.02
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> library(lme4)

> data(depression)

> head(depression)

subject severity drug time response

1 1 mild std 0 normal

2 1 mild std 1 normal

3 1 mild std 2 normal

4 2 mild std 0 normal

5 2 mild std 1 normal

6 2 mild std 2 normal

> dep.lme4.1 <-

glmer((response == "normal")

~ severity + drug*time + (1 | subject),

family = binomial, data = depression)
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> summary(dep.lme4.1)

Generalized linear mixed model fit by the Laplace approximation

Formula: (response == "normal") ~ severity + drug * time + (1 | subject)

Data: depression

AIC BIC logLik deviance

1174 1204 -581 1162

Random effects:

Groups Name Variance Std.Dev.

subject (Intercept) 0.00323 0.0568

Number of obs: 1020, groups: subject, 340

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.0280 0.1640 -0.17 0.86

severitysevere -1.3149 0.1466 -8.97 < 2e-16

drugnew -0.0597 0.2223 -0.27 0.79

time 0.4827 0.1148 4.21 2.6e-05

drugnew:time 1.0181 0.1888 5.39 7.0e-08
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Correlation of Fixed Effects:

(Intr) svrtys drugnw time

severitysvr -0.403

drugnew -0.614 -0.010

time -0.679 -0.094 0.530

drugnew:tim 0.468 -0.079 -0.750 -0.595
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In this example, GLMM and GEE estimates and SE’s for fixed effects
are nearly identical:

GLMM GEE
Est SE Est SE

alpha −0.03 0.16 −0.03 0.17
beta.1 −1.31 0.15 −1.31 0.15
beta.2 −0.06 0.22 −0.06 0.23
beta.3 0.48 0.11 0.48 0.12
beta.4 1.02 0.19 1.02 0.19

Why? Because there appears to be little correlation between repeated
measurements on subjects:

I ρ̂ = −0.003 ≈ 0 in GEE with exchangeable working correlation.

I σ̂ = 0.057 ≈ 0 in GLMM. According to model, 95% of all individuals
will have ui between ±1.96σ. Estimate this as
±1.96(0.057) = ±0.11. But e−0.11 = 0.89 and e0.11 = 1.12, so
effect of ui on odds is estimated to be small for most subjects.
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Note:

I When σ̂ = 0, estimates and SEs same as treating repeated
observations as independent.

I When σ̂ is large, estimated βs from random effects logit model
usually larger than from marginal model. They are estimating
different things: see figure below. (Details in Sec. 10.1.4 of text.)
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Teratology Overdispersion

I Female rats on iron-deficient diets assigned to four groups:

Gp 1: placebo

Gp 2: iron injections on days 7 and 10

Gp 3: iron injections on days 0 and 7

Gp 4: iron injections weekly

I Made pregnant and sacrificed after 3 weeks.

I Response: fetus dead or alive. Data on next frame.
(Gp = group, LS = litter size, ND = number dead in litter).

I Cluster = litter.

I πit = Pr(fetus t in litter i dead).

I Model: logit(πit) = α+ β2zi2 + β3zi3 + β4zi4, where

zij =

{
1, if litter i in trt gp j,

0, o/w,
j = 2, 3, 4.
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Teratology Overdispersion (ctd)

Gp LS ND Gp LS ND Gp LS ND Gp LS ND
1 10 1 1 14 14 2 10 1 3 8 0
1 11 4 1 12 7 2 3 1 3 11 1
1 12 9 1 11 9 2 13 1 3 14 0
1 4 4 1 13 8 2 12 0 3 14 1
1 10 10 1 14 5 2 14 4 3 11 0
1 11 9 1 10 10 2 9 2 4 3 0
1 9 9 1 12 10 2 13 2 4 13 0
1 11 11 1 13 8 2 16 1 4 9 2
1 10 10 1 10 10 2 11 0 4 17 2
1 10 7 1 14 3 2 4 0 4 15 0
1 12 12 1 13 13 2 1 0 4 2 0
1 10 9 1 4 3 2 12 0 4 14 1
1 8 8 1 8 8 4 8 0
1 11 9 1 13 5 4 6 0
1 6 4 1 12 12 4 17 0
1 9 7
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> data(teratology)

> ## Data also include HB = mother's hemoglobin level

> head(teratology)

N R HB GRP

1 10 1 4.1 1

2 11 4 3.2 1

3 12 9 4.7 1

4 4 4 3.5 1

5 10 10 3.2 1

6 11 9 5.9 1

> terat.binom <-

glm(cbind(R, N-R) ~ GRP, family = binomial,

data = teratology)

> chisqstat(terat.binom)

[1] 154.71

> summary(terat.binom)
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Call:

glm(formula = cbind(R, N - R) ~ GRP, family = binomial, data = teratology)

Deviance Residuals:

Min 1Q Median 3Q Max

-4.430 -0.975 -0.028 1.402 2.783

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.144 0.129 8.85 < 2e-16

GRP2 -3.323 0.331 -10.04 < 2e-16

GRP3 -4.476 0.731 -6.12 9.2e-10

GRP4 -4.130 0.476 -8.67 < 2e-16

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 509.43 on 57 degrees of freedom

Residual deviance: 173.45 on 54 degrees of freedom

AIC: 252.9
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Teratology Overdispersion (ctd)

I Binomial model fits poorly (X2 = 154.7, G2 = 173.5, df = 54).
I There is inter-litter variability that cannot be accounted for in a

binomial model by treatment group alone.
I Fetuses are more alike within litters than across litters, even within

the same treatment group.

I Standard errors invalid (too small).
I Possible solutions:

I GEE: models marginal (population averaged) effect of trt.

I GLMM: models litter-specific effect.
I At least two other approaches not discussed in this class:

I Quasi-binomial: simplified version of GEE.

I Beta-binomial: parametric mixture model, analogous to
negative-binomial for count data (Ch 3). Motivation similar to GLMM.
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> ## Adding explicit litter variable for remaining analyses:

> teratology$Litter <- as.factor(1:nrow(teratology))

> ## Need data in ungrouped (binary) format for GEE (???):

> teratbnry <- teratology

> teratbnry$N <- teratbnry$R <- NULL

> teratbnry <-

teratbnry[rep(1:nrow(teratology), teratology$N),]

> rownames(teratbnry) <- NULL # cleaning up row names

> teratbnry$Response <-

with(teratology,

unlist(apply(cbind(R, N-R), 1,

function(x) rep(c("Dead","Alive"), x))))

> head(teratbnry, 4)

HB GRP Litter Response

1 4.1 1 1 Dead

2 4.1 1 1 Alive

3 4.1 1 1 Alive

4 4.1 1 1 Alive
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> library(gee)

> terat.gee <-

gee((Response == "Dead") ~ GRP, id = Litter,

data = teratbnry, family = binomial,

corstr = "exchangeable")

(Intercept) GRP2 GRP3 GRP4

1.1440 -3.3225 -4.4762 -4.1297

> coef(summary(terat.gee))[,c("Estimate","Robust S.E.")]

Estimate Robust S.E.

(Intercept) 1.2115 0.26956

GRP2 -3.3692 0.43042

GRP3 -4.5837 0.62354

GRP4 -4.2474 0.60479

> ## Big working correlation matrix (17 x 17), but

> ## all correlations equal with exchangeable struc:

> terat.gee$working.correlation[1,2]

[1] 0.18534
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> ## glmer can use grouped or ungrouped data.

> library(lme4)

> ## Using grouped data

> terat.glmm <-

glmer(cbind(R, N-R) ~ GRP + (1|Litter),

data = teratology, family = binomial)

> ## Using ungrouped binary data

> terat.glmm <-

glmer((Response == "Dead") ~ GRP + (1|Litter),

data = teratbnry, family = binomial)

> coef(summary(terat.glmm))

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.8095 0.32858 5.5070 3.6505e-08

GRP2 -4.5398 0.67787 -6.6972 2.1242e-11

GRP3 -5.8838 1.17637 -5.0017 5.6840e-07

GRP4 -5.6068 0.86188 -6.5054 7.7510e-11
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Teratology Overdispersion (ctd)

Binomial ML GEE GLMM
(Intercept) 1.14 (0.13) 1.21 (0.27) 1.81 (0.33)

GRP2 -3.32 (0.33) -3.37 (0.43) -4.54 (0.68)
GRP3 -4.48 (0.73) -4.58 (0.62) -5.88 (1.18)
GRP4 -4.13 (0.48) -4.25 (0.6) -5.61 (0.86)

I SEs for binomial ML fit invalid (because of lack of fit)
I GEE estimates are similar to binomial but with larger SEs.

I Estimate marginal (population averaged) effects.

I GLMM estimates are larger in magnitude.
I Estimate conditional (within litter) effects.
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Ch 7: Loglinear Models

I Logistic regression and other models in Ch 3–6, 8–10 distinguish
between a response variable Y and explanatory vars x1, x2, etc.

I Loglinear models for contingency tables treat all variables as
response variables, like multivariate analysis.

Ex. Survey of high school seniors (see text):

I Y1: used alchohol? (yes, no)
I Y2: cigarettes? (yes, no)
I Y3: marijuana? (yes, no)

Interested in patterns of dependence and independence among the
three variables:

I Any variables independent?
I Strength of associations?
I Interactions?
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I Loglinear models treat cell counts as Poisson and use log link fcn.

Motivation: In I× J table, X and Y are independent if

Pr(X = i, Y = j) = Pr(X = i)Pr(Y = j) for all i, j

i.e., πij = πi+π+j

For expected cell frequencies,

µij = nπij (general form)

= nπi+π+j (under independence)

=⇒ log(µij) = λ+ λXi + λYj

λXi : effect of classification in row i (I− 1 nonredundant parameters)

λYj : effect of classification in col j (J− 1 nonredundant parameters)

Loglinear model of independence: treats X and Y symmetrically.
Unlike, e.g., logistic regr where Y = response, X = explanatory.
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Note: For a Poisson loglinear model,

df = number of Poisson counts − number of parameters

Here number of Poisson counts = number cells in table.

Think of dummy variables for each variable.
Number of dummies is one less than number of levels of variable.
Products of dummy variables correspond to “interaction” terms.
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For an I× J contingency table:

I Indep. model: log(µij) = λ+ λXi + λYj (df = (I− 1)(J− 1))

no. cells = IJ

no. parameters = 1 + (I− 1) + (J− 1) = I+ J− 1

df = IJ− (I+ J− 1) = (I− 1)(J− 1)

I Saturated model: log(µij) = λ+ λXi + λYj + λXYij (df = 0)

Parameter Nonredundant
λ 1
λXi I− 1
λYj J− 1
λXYij (I− 1)(J− 1)

Total: IJ
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Note: Log-odds-ratio comparing levels i and i ′ of X and j and j ′ of Y is

log
(
µijµi ′j ′

µij ′µi ′j

)
= logµij + logµi ′j ′ − logµij ′ − logµi ′j

=
(
λ+ λXi + λYj + λXYij

)
+
(
λ+ λXi ′ + λ

Y
j ′ + λ

XY
i ′j ′
)

−
(
λ+ λXi + λYj ′ + λ

XY
ij ′
)
−
(
λ+ λXi ′ + λ

Y
j + λXYi ′j

)
= λXYij + λXYi ′j ′ − λ

XY
ij ′ − λ

XY
i ′j .

For the independence model this is 0, and the odds-ratio is e0 = 1.

For the saturated model, the odds-ratio, expressed in terms of of the
parameters of the loglinear model, is

µijµi ′j ′

µij ′µi ′j
= exp

{
λXYij + λXYi ′j ′ − λ

XY
ij ′ − λ

XY
i ′j

}
.

Substituting the MLEs of the saturated model (perfect fit) just
reproduces the empirical odds ratio

nii ′njj ′
nij ′ni ′j

.
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Income and Job Satisfaction

Income Job Satisfaction

Dissat Little Moderate Very

<5K 2 4 13 3
5K–15K 2 6 22 4
15K–25K 0 1 15 8
>25K 0 3 13 8

Originally used Pearson’s chisquare test: X2 = 11.5, df = 9 (G2 = 13.5).

With income scores x = 3, 10, 20, 35, used VGAM package to fit baseline
category logit model

log
(
πj

π4

)
= αj + βjx, j = 1, 2, 3.

and later, cumulative logit model

logit
[
Pr(Y 6 j)

]
= αj + βx, j = 1, 2, 3.
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Using dummy variables, the model

log(µij) = λ+ λIi + λ
S
j

can be expressed as

log(µij) = λ+ λI1z1 + λ
I
2z2 + λ

I
3z3 + λ

S
1w1 + λ

S
2w2 + λ

S
3w3

where we take λI4 = λS4 = 0 and

z1 =

{
1, inc < 5K,

0, otherwise,
w1 =

{
1, very dissat

0, otherwise,

z2 =

{
1, 5K 6 inc < 15K,

0, otherwise,
w2 =

{
1, a little sat.

0, otherwise,

z3 =

{
1, 15K 6 inc < 25K,

0, otherwise,
w3 =

{
1, moderately sat.

0, otherwise,

406



> sattab

Job Satisfaction

Income Dissat Little Moderate Very

<5K 2 4 13 3

5K--15K 2 6 22 4

15K--25K 0 1 15 8

>25K 0 3 13 8

> jobsat <- as.data.frame(sattab)

> names(jobsat)

[1] "Income" "Job.Satisfaction"

[3] "Freq"

> names(jobsat)[2] <- "Satis"
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> jobsat

Income Satis Freq

1 <5K Dissat 2

2 5K--15K Dissat 2

3 15K--25K Dissat 0

4 >25K Dissat 0

5 <5K Little 4

6 5K--15K Little 6

7 15K--25K Little 1

8 >25K Little 3

9 <5K Moderate 13

10 5K--15K Moderate 22

11 15K--25K Moderate 15

12 >25K Moderate 13

13 <5K Very 3

14 5K--15K Very 4

15 15K--25K Very 8

16 >25K Very 8
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> levels(jobsat$Income)

[1] "<5K" "5K--15K" "15K--25K" ">25K"

> levels(jobsat$Satis)

[1] "Dissat" "Little" "Moderate" "Very"

> options(contrasts=c("contr.SAS","contr.poly"))

> jobsat.indep <-

glm(Freq ~ Income + Satis, family=poisson,

data=jobsat)
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> summary(jobsat.indep)

Call:

glm(formula = Freq ~ Income + Satis, family = poisson, data = jobsat)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.4547 -1.0228 0.0152 0.5880 1.0862

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.67e+00 2.75e-01 6.07 1.3e-09

Income<5K -8.70e-02 2.95e-01 -0.29 0.7682

Income5K--15K 3.48e-01 2.67e-01 1.31 0.1914

Income15K--25K 3.91e-15 2.89e-01 0.00 1.0000

SatisDissat -1.75e+00 5.42e-01 -3.23 0.0012

SatisLittle -4.96e-01 3.39e-01 -1.46 0.1431

SatisModerate 1.01e+00 2.44e-01 4.14 3.5e-05
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(Dispersion parameter for poisson family taken to be 1)

Null deviance: 90.242 on 15 degrees of freedom

Residual deviance: 13.467 on 9 degrees of freedom

AIC: 77.07

Number of Fisher Scoring iterations: 5

NA

> chisqstat(jobsat.indep)

[1] 11.524
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> jobsat.saturated <- update(jobsat.indep, . ~ Income*Satis)

> anova(jobsat.indep, jobsat.saturated, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ Income + Satis

Model 2: Freq ~ Income + Satis + Income:Satis

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 9 13.5

2 0 0.0 9 13.5 0.14

> ## Set contrasts back to R defaults

> options(contrasts=c("contr.treatment","contr.poly"))
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Loglinear Models for Three-Way Tables
Here two-factor terms represent conditional log odds ratios at a fixed
level of the third variable.

Ex. 2× 2× 2 table. Consider the model

log(µijk) = λ+ λXi + λYj + λZk + λXZik + λYZjk .

Called the model of X-Y conditional independence; denoted (XZ, YZ).

I X and Y are conditionally independent, given Z:

log(θXY(k)) = 0 =⇒ θXY(k) = 1

I the X-Z odds ratio is the same at all levels of Y:

log(θX(j)Z) = λ
XZ
11 + λXZ22 − λXZ12 − λXZ21︸ ︷︷ ︸

does not depend on j

Similarly, Y-Z odds ratio same at all levels of X. Model has no
three-factor interaction.
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Ex. Consider the loglinear model

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk .

Each pair of variables is conditionally dependent, but association (as
measured by odds ratios) is the same at all levels of third variable.

Called the model of homogeneous association (or model of no
three-factor interaction; denoted (XY,XZ, YZ).
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Ex. Survey of 2276 high school seniors.

> teens <-

array(c(911,44,3,2, 538,456,43,279),

dim = c(2,2,2),

dimnames = list(cigs=c("yes","no"),

alc=c("yes","no"), mj=c("yes","no")))

> ## Next line just for Table 7.4. Not required.

> teens <- aperm(teens, c(3,1,2))

> teens <- as.table(teens)

> ftable(teens, row.vars=c("alc","cigs"))

mj yes no

alc cigs

yes yes 911 538

no 44 456

no yes 3 43

no 2 279
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> teens.df <- as.data.frame(teens)

> teens.df

mj cigs alc Freq

1 yes yes yes 911

2 no yes yes 538

3 yes no yes 44

4 no no yes 456

5 yes yes no 3

6 no yes no 43

7 yes no no 2

8 no no no 279

> teens.df <-

transform(teens.df,

cigs = relevel(cigs, "no"),

alc = relevel(alc, "no"),

mj = relevel(mj, "no"))

416



> teens.AC.AM.CM <-

glm(Freq ~ alc*cigs + alc*mj + cigs*mj,

family=poisson, data=teens.df)

> ### Another way:

> ## teens.AC.AM.CM <-

> ## glm(Freq ~ alc*cigs*mj - alc:cigs:mj,

> ## family=poisson, data=teens.df)

> summary(teens.AC.AM.CM)
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Call:

glm(formula = Freq ~ alc * cigs + alc * mj + cigs * mj, family = poisson,

data = teens.df)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.6334 0.0597 94.36 < 2e-16

alcyes 0.4877 0.0758 6.44 1.2e-10

cigsyes -1.8867 0.1627 -11.60 < 2e-16

mjyes -5.3090 0.4752 -11.17 < 2e-16

alcyes:cigsyes 2.0545 0.1741 11.80 < 2e-16

alcyes:mjyes 2.9860 0.4647 6.43 1.3e-10

cigsyes:mjyes 2.8479 0.1638 17.38 < 2e-16

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2851.46098 on 7 degrees of freedom

Residual deviance: 0.37399 on 1 degrees of freedom

AIC: 63.42
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The (AC,AM,CM) model fits well: G2 = 0.37 (and X2 = 0.4) on 1 df.

> df.residual(teens.AC.AM.CM)

[1] 1

> deviance(teens.AC.AM.CM)

[1] 0.37399

> chisqstat(teens.AC.AM.CM)

[1] 0.4011
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Note: As a LRT, goodness-of-fit on previous slide is comparing to
saturated model.

> teens.ACM <- update(teens.AC.AM.CM, . ~ alc*cigs*mj)

> anova(teens.AC.AM.CM, teens.ACM, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ alc * cigs + alc * mj + cigs * mj

Model 2: Freq ~ alc + cigs + mj + alc:cigs + alc:mj + cigs:mj + alc:cigs:mj

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 1 0.374

2 0 0.000 1 0.374 0.54
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And none of the interaction terms can be dropped:

> drop1(teens.AC.AM.CM, test="Chisq")

Single term deletions

Model:

Freq ~ alc * cigs + alc * mj + cigs * mj

Df Deviance AIC LRT Pr(>Chi)

<none> 0 63

alc:cigs 1 188 249 187 <2e-16

alc:mj 1 92 153 92 <2e-16

cigs:mj 1 497 558 497 <2e-16
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Note: drop1() does LRTs comparing to simpler models. Test statistic is
the usual

−2(L0 − L1) = deviance0 − deviance1

and df is difference in number of nonredundant parameters.

E.g., to test for conditional independence of A and C given M:

> teens.AM.CM <- update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)

> anova(teens.AM.CM, teens.AC.AM.CM, test="Chisq")

Analysis of Deviance Table

Model 1: Freq ~ alc + mj + cigs + alc:mj + mj:cigs

Model 2: Freq ~ alc * cigs + alc * mj + cigs * mj

Resid. Df Resid. Dev Df Deviance Pr(>Chi)

1 2 187.8

2 1 0.4 1 187 <2e-16
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Table 7.4 gives fitted values for several different models fit to these data.

> teens.AM.CM <-

update(teens.AC.AM.CM, . ~ alc*mj + cigs*mj)

> teens.AC.M <-

update(teens.AC.AM.CM, . ~ alc*cigs + mj)

> teens.A.C.M <-

update(teens.AC.AM.CM, . ~ alc + cigs + mj)

> teens.ACM <-

update(teens.AC.AM.CM, . ~ alc*cigs* mj)

> table.7.4 <-

data.frame(predict(teens.A.C.M, type="response"))

> table.7.4 <-

cbind(table.7.4, predict(teens.AC.M, type="response"))

> table.7.4 <-

cbind(table.7.4, predict(teens.AM.CM, type="response"))

> table.7.4 <-

cbind(table.7.4, predict(teens.AC.AM.CM, type="response"))

> table.7.4 <-

cbind(table.7.4, predict(teens.ACM, type="response"))
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> table.7.4 <- signif(table.7.4, 3)

> table.7.4 <-

cbind(teens.df[,c("alc","cigs","mj")],

table.7.4)

> names(table.7.4) <-

c("alc","cigs","mj",

"(A,C,M)","(AC,M)","(AM,CM)","(AC,AM,CM)","(ACM)")
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> table.7.4

alc cigs mj (A,C,M) (AC,M) (AM,CM) (AC,AM,CM) (ACM)

1 yes yes yes 540.0 611.0 909.00 910.00 911

2 yes yes no 740.0 838.0 439.00 539.00 538

3 yes no yes 282.0 211.0 45.80 44.60 44

4 yes no no 387.0 289.0 555.00 455.00 456

5 no yes yes 90.6 19.4 4.76 3.62 3

6 no yes no 124.0 26.6 142.00 42.40 43

7 no no yes 47.3 119.0 0.24 1.38 2

8 no no no 64.9 162.0 180.00 280.00 279
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In (AC,AM,CM) model, AC odds-ratio is the same at each level of M.
With 1 = yes and 2 = no for each variable, the estimated conditional AC
odds ratio is

µ̂11kµ̂22k

µ̂12kµ̂21k
= exp

(
λ̂AC

11 + λ̂AC
22 − λ̂AC

12 − λ̂AC
21

)
= e2.0545 = 7.8

A 95% CI is

e2.05±(1.96)(0.174) =
(
e1.71, e2.40) = (5.5, 11.0)

The commons odds-ratio is reflected in the fitted values for the model:

(910)(1.38)
(44.6)(3.62)

= 7.8
(539)(280)
(455)(42.4)

= 7.8

Similar results hold for AM and CM conditional odds-ratios in this model.
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In (AM,CM) model, λAC
ij = 0, and conditional AC odds-ratio (given M) is

e0 = 1 at each level of M, i.e., A and C are conditionally indep. given M.
Again, this is reflected in the fitted values for this model.

(909)(0.24)
(45.8)(4.76)

= 1
(439)(180)
(555)(142)

= 1

The AM odds-ratio is not 1, but it is the same at each level of C:

(909)(142)
(439)(4.76)

= 61.87
(45.8)(180)
(555)(0.24)

= 61.87

Similarly, the CM odds-ratio is the same at each level of A:

(909)(555)
(439)(45.8)

= 25.14
(4.76)(180)
(142)(0.24)

= 25.14
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Standardized residuals may help understand lack of fit.
Text uses standardized Pearson residuals.
rstandard() computes standardized deviance resids. by default
but has type = "pearson" option.

See Section 7.2.2 for example and discussion.
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Note:

I Loglinear models extend to any number of dimensions.

I Loglinear models treat all variables symmetrically.

Logistic regression models treat Y as response and other variables
as explanatory. More natural approach when there is a single
response.
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Mosaic Plots: Two-Way Tables
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The previous plot was produced by the commands

> library(vcd)

> mosaic(sattab)

The same plot could have been produced with

> mosaic(~ Income + Satis, data = jobsat)

You might prefer to view the plot with a different orientation:

> mosaic(sattab, split_vertical = TRUE)
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Recall:

> (sat.chisq <- chisq.test(sattab))

Pearson's Chi-squared test

data: sattab

X-squared = 11.524, df = 9, p-value = 0.2415

> round(sat.chisq$expected, 1)

Job Satisfaction

Income Dissat Little Moderate Very

<5K 0.8 3.0 13.3 4.9

5K--15K 1.3 4.6 20.6 7.5

15K--25K 0.9 3.2 14.5 5.3

>25K 0.9 3.2 14.5 5.3

> mosaic(sattab, split_vertical = TRUE, main = "Observed")

> mosaic(sattab, split_vertical = TRUE, type = "expected",

main = "Expected")
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Observed
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> round(sat.chisq$stdres, 1)

Job Satisfaction

Income Dissat Little Moderate Very

<5K 1.4 0.7 -0.2 -1.1

5K--15K 0.8 0.9 0.6 -1.8

15K--25K -1.1 -1.5 0.2 1.5

>25K -1.1 -0.2 -0.7 1.5

Same as the standardized (i.e., ”adjusted”) Pearson residuals from
fitting loglinear model of independence:

> round(rstandard(jobsat.indep, type = "pearson"), 1)

1 2 3 4 5 6 7 8 9 10 11

1.4 0.8 -1.1 -1.1 0.7 0.9 -1.5 -0.2 -0.2 0.6 0.2

12 13 14 15 16

-0.7 -1.1 -1.8 1.5 1.5
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This example isn’t the best here because Pearson’s chi-square test
does not provide any evidence against independence.

> mosaic(sattab, gp = shading_Friendly)

> mosaic(sattab, residuals = sat.chisq$stdres,

gp = shading_hcl,

gp_args = list(p.value = sat.chisq$p.value,

interpolate = c(2,4)))
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Hair and Eye Color

Data from vcd package.

> ftable(Eye ~ Sex + Hair, data = HairEyeColor)

Eye Brown Blue Hazel Green

Sex Hair

Male Black 32 11 10 3

Brown 53 50 25 15

Red 10 10 7 7

Blond 3 30 5 8

Female Black 36 9 5 2

Brown 66 34 29 14

Red 16 7 7 7

Blond 4 64 5 8
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Hair and Eye Color (ctd)

Collapsing across Sex.

> haireye <- margin.table(HairEyeColor, 1:2)

> haireye

Eye

Hair Brown Blue Hazel Green

Black 68 20 15 5

Brown 119 84 54 29

Red 26 17 14 14

Blond 7 94 10 16

> (he.chisq <- chisq.test(haireye))

Pearson's Chi-squared test

data: haireye

X-squared = 138.29, df = 9, p-value < 2.2e-16
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Hair and Eye Color (ctd)
> mosaic(haireye, residuals = he.chisq$stdres,

gp = shading_hcl,

gp_args = list(p.value = he.chisq$p.value,

interpolate = c(2,4)),

labeling_args = list(abbreviate_labs = c(Eye = 3)))
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Teen Survey Data
cigs

m
j

al
c

no

no
ye

s

ye
s

yes no

no
ye

s

443



The previous plot was produced by the commands

> mosaic(teens)

Compare to

> ftable(round(prop.table(teens), 3))

alc yes no

mj cigs

yes yes 0.400 0.001

no 0.019 0.001

no yes 0.236 0.019

no 0.200 0.123

The same plot could have been produced by either of the commands:

> mosaic(~ mj + cigs + alc, data = teens)

> mosaic(~ mj + cigs + alc, data = teens.df)

Changing the order of the terms in the formula has the expected effect.
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Standardized residuals from two loglinear models.

> table.7.8 <- teens.df[,c("alc","cigs","mj","Freq")]

> table.7.8 <- cbind(table.7.8,

round(predict(teens.AM.CM, type = "response"),1))

> table.7.8 <- cbind(table.7.8,

round(rstandard(teens.AM.CM, type = "pearson"),2))

> table.7.8 <- cbind(table.7.8,

round(predict(teens.AC.AM.CM, type = "response"),1))

> table.7.8 <- cbind(table.7.8,

round(rstandard(teens.AC.AM.CM, type = "pearson"),2))

> names(table.7.8) <-

c("A","C","M","Obs","(AM,CM)","StdRes",

"(AC,AM,CM)","StdRes")
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> table.7.8

A C M Obs (AM,CM) StdRes (AC,AM,CM) StdRes

1 yes yes yes 911 909.2 3.7 910.4 0.63

2 yes yes no 538 438.8 12.8 538.6 -0.63

3 yes no yes 44 45.8 -3.7 44.6 -0.63

4 yes no no 456 555.2 -12.8 455.4 0.63

5 no yes yes 3 4.8 -3.7 3.6 -0.63

6 no yes no 43 142.2 -12.8 42.4 0.63

7 no no yes 2 0.2 3.7 1.4 0.63

8 no no no 279 179.8 12.8 279.6 -0.63

I Number nonredundant standardized residuals = residual df.

I Model (AM,CM): Residual df = 2

I Model (AC,AM,CM): Residual df = 1
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vcdExtra package works from fitted loglinear model.
Uses unadjusted Pearson residuals, or optionally, standardized
deviance residuals.

Here is the default, using unadjusted Pearson residuals:

> library(vcdExtra)

> mosaic(teens.AM.CM, ~ mj + cigs + alc)

> mosaic(teens.AC.AM.CM, ~ mj + cigs + alc)
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With the standardized deviance residuals:

> mosaic(teens.AM.CM, ~ mj + cigs + alc,

residuals_type = "rstandard")

> mosaic(teens.AC.AM.CM, ~ mj + cigs + alc,

residuals_type = "rstandard")
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And finally, with the standardized Pearson residuals (note that the title
on the legend is not correct):

> mosaic(teens.AM.CM, ~ mj + cigs + alc,

residuals = rstandard(teens.AM.CM, type = "pearson"))

> mosaic(teens.AC.AM.CM, ~ mj + cigs + alc,

residuals = rstandard(teens.AC.AM.CM, type = "pearson"))

I have suggested a patch to make the selection of Pearson vs deviance
and non-standardized vs standardized residuals more straightforward.
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7.3 The Loglinear-Logit Connection

The loglinear model (XY,XZ, YZ), i.e.,

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk ,

I treats variables symmetrically

I permits association for each pair of vars.

I allows no three-factor association (i.e., implies homogeneous
association)
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Suppose Y is binary and let

πik = P(Y = 1|X = i,Z = k).

Treat Y as response. If model (XY,XZ, YZ) holds, then

logit(πik) = log
( πik

1 − πik

)
= log

(P(Y = 1|X = i,Z = k)

P(Y = 2|X = i,Z = k)

)
= log(µi1k) − log(µi2k)

= (λ+ λXi + λY1 + λZk + λXYi1 + λXZik + λYZ1k )

− (λ+ λXi + λY2 + λZk + λXYi2 + λXZik + λYZ2k )

= (λY1 − λY2 )︸ ︷︷ ︸
α

+(λXYi1 − λXYi2 )︸ ︷︷ ︸
βXi

+(λYZ1k − λYZ2k )︸ ︷︷ ︸
βZk

= α+ βXi + βZk

i.e., logit model for Y has additive main effects and no interaction.
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UCB Admissions

Recall the UCB admissions data.

Gender Male Female

Admit Admitted Rejected Admitted Rejected

Dept

A 512 313 89 19

B 353 207 17 8

C 120 205 202 391

D 138 279 131 244

E 53 138 94 299

F 22 351 24 317

Let A = admission (yes/no) be response var. Logit model:

logit(πik) = α+ βGi + βDk

The corresponding loglinear model is (AG,AD,DG):

log(µijk) = λ+ λAi + λGj + λDk + λAGij + λADik + λDGjk
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UCB Admissions (ctd)

Both models have deviance G2 = 20.20 (df = 5):

> UCB.logit <-

glm(cbind(Admitted, Rejected) ~ Gender + Dept,

family = binomial, data = UCBw)

> c(deviance(UCB.logit), df.residual(UCB.logit))

[1] 20.204 5.000

> UCB.loglin <-

glm(Freq ~ Admit*Gender + Admit*Dept + Gender*Dept,

family = poisson, data = UCBdf)

> c(deviance(UCB.loglin), df.residual(UCB.loglin))

[1] 20.204 5.000
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UCB Admissions (ctd)

The df for testing fit are the same for each model:

Logit model Treats table as 12 indep. binomial variates on response
A at 12 combinations of levels of D and G:

no. obs. = 12

no. param. = 1 + 1 + 5 = 7

(residual) df = 12 − 7 = 5

Loglinear model Treats table as 24 indep. Poisson variates:

no. obs. = 24

no. param. = 1 + 1 + 1 + 5 + 1 + 5 + 5 = 19

(residual) df = 24 − 19 = 5
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UCB Admissions (ctd)

Controlling for D (department), estimated odds ratio for effected of G on
A (odds of admission for males divided by odds for females), is

exp(β̂G1 − β̂G2 ) = e0−0.0999 = .905

Identical to

exp
(
λ̂AG11 + λ̂AG22 − λ̂AG12 − λ̂AG21

)
= exp

(
0 − 0.0999 − 0 − 0

)
> coef(UCB.logit)

(Intercept) GenderFemale DeptB DeptC

0.582051 0.099870 -0.043398 -1.262598

DeptD DeptE DeptF

-1.294606 -1.739306 -3.306480
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> coef(UCB.loglin)

(Intercept) AdmitRejected

6.271499 -0.582051

GenderFemale DeptB

-1.998588 -0.403220

DeptC DeptD

-1.577903 -1.350005

DeptE DeptF

-2.449820 -3.137871

AdmitRejected:GenderFemale AdmitRejected:DeptB

-0.099870 0.043398

AdmitRejected:DeptC AdmitRejected:DeptD

1.262598 1.294606

AdmitRejected:DeptE AdmitRejected:DeptF

1.739306 3.306480

GenderFemale:DeptB GenderFemale:DeptC

-1.074820 2.665133

GenderFemale:DeptD GenderFemale:DeptE

1.958324 2.795186

GenderFemale:DeptF

2.002319
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For a given logit model, equivalent loglinear model (same goodness of
fit, df, fitted values, etc) has:

I interactions of Y with explanatory variables implied by logit model;

I and the fullest interaction term among explanatory variables

Example

π = P(Y = 1), predictors A,B,C (4-way table).

Logit model

logit(π) = α+ βAi + βBj + βCk

corresponds to loglinear model (AY,BY,CY,ABC) .

Logit model

logit(π) = α+ βAi + βBj + βCk + βBCjk

corresponds to loglinear model (AY,BCY,ABC) .
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Remarks

I When there is a single binary response, it is simpler to approach
data directly using logit models.

I Similar remarks hold for a multi-category response Y:
I Baseline-category logit model has a matching loglinear model.

I With a single response, it is simpler to use the baseline-category
logit model.

I Loglinear models have advantage of generality — can handle
multiple responses, some of which may have more than two
outcome categories.

464



7.4 Independence Graphs and Collapsibility

Independence graph: a graphical representation for conditional
independence.

I Vertices (or nodes) represent variables.

I Connected by edges: a missing edge between two variables
represents a conditional independence between the variables.

I Different models may produce the same graph.

I Graphical models: subclass of loglinear models

I Within this class there is a unique model for each independence
graph.

I For any group of variables having no missing edges, graphical model
contains the highest order interaction term for those variables.
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Independence Graphs for a 4-Way Table (Variables W, X, Y, Z)

Model(s) Graph

(WX,WY,WZ, YZ)
(WX,WYZ)∗ X W

Y

Z
(WX,WY,WZ,XZ, YZ)

(WX,XZ,WYZ)
(WXZ,WY, YZ)
(WXZ,WYZ)∗

X

W

Z

Y

(WX,WY,WZ)∗ X W

Y

Z

(WX,XY, YZ)∗ W X Y Z
∗ Graphical models.
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Independence Graphs for a 4-Way Table (ctd)

Model(s) Graph

(X,WY,WZ, YZ)
(X,WYZ)∗ X W

Y

Z

(WX, YZ)∗ W X Y Z

(WX,WY,WZ,XY,XZ, YZ)
(WX,WY,WZ,XYZ)
(WX,WYZ,XYZ)
. . . many others . . .

(WXYZ)∗ W

X Y

Z
∗ Graphical models.
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Collapsibility Conditions for Three-Way Tables

For a three-way table, the XY marginal and conditional odds
ratios are identical if either Z and X are conditonally
independent or if Z and Y are conditionally independent.

I Conditions say control variable Z is either:

I conditionally independent of X given Y, as in model (XY, YZ);

I or conditionally independent of Y given X, as in (XY,XZ).

I I.e., XY association is identical in the partial tables and the
marginal table for models with independence graphs

X Y Z Y X Z

or even simpler models.
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Teen Survey

A = alcohol use, C = cigarette use, M = marijuana use.

The model of AC conditional independence, (AM,CM), has
independence graph

A M C

Consider AM association, treating C as control variable.
Since C is conditionally independent of A, the AM conditional odds
ratios are the same as the AM marginal odds ratio collapsed over C.

(909.24)(142.16)
(438.84)(4.76)

=
(45.76)(179.84)
(555.16)(0.24)

=
(955)(322)
(994)(5)

= 61.9

See Tables 7.4 and 7.5, or next slide.

> exp(coef(teens.AM.CM)[5])

alcyes:mjyes

61.873
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> AM.CM.fitted <- teens

> AM.CM.fitted[,,] <- predict(teens.AM.CM, type="response")

> AM.CM.fitted[,"yes",]

alc

mj yes no

yes 909.24 4.7604

no 438.84 142.1596

> AM.CM.fitted[,"no",]

alc

mj yes no

yes 45.76 0.23958

no 555.16 179.84043

> AM.CM.fitted[,"yes",] + AM.CM.fitted[,"no",]

alc

mj yes no

yes 955 5

no 994 322
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Teen Survey

I Similarly, CM association is collapsible over A.

I The AC association is not collapsible, because M is conditionally
dependent with both A and C in model (AM,CM).

Thus, A and C may be marginally dependent, even though
conditionally independent.

(909.24)(0.24)
(45.76)(4.76)

=
(438.84)(179.84)
(555.16)(142.16)

= 1

(1348.08)(180.08)
(600.92)(146.92)

= 2.75 6= 1
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> AM.CM.fitted["yes",,]

alc

cigs yes no

yes 909.24 4.76042

no 45.76 0.23958

> AM.CM.fitted["no",,]

alc

cigs yes no

yes 438.84 142.16

no 555.16 179.84

> AM.CM.fitted["yes",,] + AM.CM.fitted["no",,]

alc

cigs yes no

yes 1348.08 146.92

no 600.92 180.08
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Collapsibility Conditions for Multiway Tables

If the variables in a model for a multiway table partition into
three mutually exclusive subsets, A, B, C, such that B
separates A and C (that is, if the model does not contain
parameters linking variables from A directly to variables from
C), then when the table is collapsed over the variables in C,
model parameters relating variables in A and model
parameters relating variables in A with variables in B are
unchanged.

A B C
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Teen Survey Data
> data(teens)

> ftable(R + G + M ~ A + C, data = teens)

R White Other

G Female Male Female Male

M Yes No Yes No Yes No Yes No

A C

Yes Yes 405 268 453 228 23 23 30 19

No 13 218 28 201 2 19 1 18

No Yes 1 17 1 17 0 1 1 8

No 1 117 1 133 0 12 0 17
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Teen Survey Data (ctd)

Text suggests loglinear model (AC, AM, CM, AG, AR, GM, GR).

C

M

A

G

R

The set {A, M} separates sets {C} and {G, R}.
I.e., C is conditionally independent of G and R given M and A.
Thus (as verified on the next slide):

Collapsing over G and R, the conditional associations between
C and M and between C and A are the same as with the
model (AC, AM, CM) fitted earlier.

> teens.df <- as.data.frame(teens)

> ACM <- margin.table(teens, 1:3)

> ACM.df <- as.data.frame(ACM)
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> teens.m6 <-

glm(Freq ~ A*C + A*M + C*M + A*G + A*R + G*M + G*R,

family = poisson, data = teens.df)

> AC.AM.CM <- glm(Freq ~ A*C + A*M + C*M,

family = poisson, data = ACM.df)

> coef(teens.m6)

(Intercept) ANo CNo MNo

5.97841 -5.75073 -3.01575 -0.38955

GMale ROther ANo:CNo ANo:MNo

0.13584 -2.66305 2.05453 3.00592

CNo:MNo ANo:GMale ANo:ROther MNo:GMale

2.84789 0.29229 0.59346 -0.26929

GMale:ROther

0.12619

> coef(AC.AM.CM)

(Intercept) ANo CNo MNo

6.81387 -5.52827 -3.01575 -0.52486

ANo:CNo ANo:MNo CNo:MNo

2.05453 2.98601 2.84789
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Exam 2: Time and Place

Tuesday, Apr 24, 2012
8:30 a.m. – 10:25 a.m.
Room 100 Griffin-Floyd Hall (FLO 100)
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Exam 2 Review: Building Logistic Regression Models
Model Selection

I LR tests to compare nested models.

I −2(L0 − L1) = deviance0 − deviance1

I df = diff. in no. nonredundant params = diff. in residual df’s

I Wald tests can also be used, but LR generally preferred.

I AIC.

I Measures of predictive power.

I Classification table (a.k.a., confusion matrix).

I Cross-validation.

I ROC curve, concordance index (area under ROC curve).

I Correlation between Y and π̂ (meh).
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I Multicollinearity (correlated explanatory variables) problematic (big
SEs, hard to pick model).

I Automated backward elimination or forward selection generally not
recommended (multiple testing).

I Parsimony (simplicity) good, but use care and judgement in
choosing model. Keep research questions and subject area
expertise in mind.
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Exam 2 Review: Building Logistic Regression Models
Model Checking

I Goodness-of-fit tests

I X2 (chi-square statistic) or G2 (deviance)

I Compares fitted model to saturated model (e.g, the data).

I df = num. binomials − num. model params

I Use for contingency tables with few expected counts < 5.

I For “sparse” data, chi-square approx. poor for X2 and G2.
May try grouping observations to reduce sparsity:

I by partitioning numeric predictor(s). E.g., for horseshoe crab width,

Range 20–24 24–26 26–28 28–34
Score 22 25 27 31

I by partitioning π̂ (Hosmer-Lemeshow)
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I Use LR test to check whether fit improves significantly when other
predictors or interactions are added.

I LR test ok even when deviance alone invalid for gof (sparse data).

I Standardized residuals.

I Residual standardized by dividing by SE.

I Examine where lack of fit occurs.

I Values < −2 or > 2 suggest lack of fit in small tables.

I Values < −3 or > 3 very strong evidence for lack of fit.

I Sparse data and/or too many terms in model may lead to

I infinite MLEs

I very large SEs

I bad Wald tests and CIs
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Exam 2 Review: Baseline-Category Logit Model

For response Y with J > 2 categories.

πj = Pr(Y = j), j = 1, . . . , J.

Model:

log
(
πj

πJ

)
= αj + βjx, j = 1, 2, . . . , J− 1.

Separate set of parameters (αj,βj) for each logit.

I Used for nominal response.

I Ok for ordinal response, but ignores ordering.

I Choice of category for baseline not important.
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I Usual inferential procedures apply

I X2 and/or G2 for gof in contingency tables.

I LR tests.

I Wald tests and CIs.

I Estimated probs calculated from

πj =
eαj+βjx

1 + eα1+β1x + · · ·+ eαJ−1+βJ−1x
, j = 1, 2, . . . , J− 1,

πJ =
1

1 + eα1+β1x + · · ·+ eαJ−1+βJ−1x
,
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Exam 2 Review: Cumulative Logit Model

For ordinal response Y with J > 2 categories.

Model:

logit
[
Pr(Y 6 j)

]
= αj + βx, j = 1, . . . , J− 1.

I Separate intercept αj for each cumulative logit

I Same slope β for each cumulative logit

I eβ = multiplicative effect of 1-unit increase in x on odds that
(Y 6 j) (instead of (Y > j)).

I Reversing ordering of Y changes sign of β.

I Usual inferential methods apply. Takes avantage of ordering in Y.
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Exam 2 Review: Models for Matched Pairs
McNemar’s Test

Two binary responses from each subject or matched pair. E.g.,

I measure response at two different times

I husband and wife answer same question

Simplest kind of dependent response.

Resp 2
S F

Resp 1
S n11 n12 n1+

F n21 n22 n2+

n+1 n+2 n
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Resp 2
S F

Resp 1
S π11 π12 π1+

F π21 π22 π2+

π+1 π+2 1

I Want to test H0 : π1+ = π+1 (marginal homogeneity).

I McNemar’s test:

z =
n12 − n21√
n12 + n21

∼
H0
N(0, 1)

(
or z2 =

(n12 − n21)
2

n12 + n21
∼
H0
χ2

1

)

I CI for π1+ − π+1

p1+ − p+1 =
n1+

n
−
n+1

n

SE =
1
n

√
n12 + n21 −

(n12 − n21)2

n
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Exam 2 Review: Measuring Agreement
Suppose rating on a 4-point scale.

Rater 2
1 2 3 4

Rater 1

1 n11 n12 n13 n14 n1+

2 n21 n22 n23 n24 n2+

3 n31 n32 n33 n34 n3+

4 n41 n42 n43 n44 n4+

n+1 n+2 n+3 n+4 n

Cohen’s kappa measures agreement as departure from independence
in direction of perfect agreement:

κ =
Pr(agree) − Pr(agree|indep)

1 − Pr(agree|indep)
=

∑
i πii −

∑
i πi+π+i

1 −
∑
i πi+π+i

I κ = 0 if agreement only equals that expected under independence.

I κ = 1 if perfect agreement.
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Exam 2 Review: Generalized Estimating Equations (GEE)

GEE used for correlated responses (repeated measurements/clustered
data).

I Specify (marginal) model for individual responses in usual way.

I Select a “working correlation” matrix (independence,
exchangeable, etc).

I GEE parameter estimates consistent even if working correlation
structure misspecified.

I (Robust) standard errors adjusted to reflect actual observed
depedendence, even if form of working correlation is wrong.

I “Quasi-likelihood” method. No particular form assumed for joint
distribution of responses.
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Exam 2 Review: Random Effects Models (GLMM)

Random (or mixed) effects models also useful for correlated responses.

I Add subject specific terms to model.

I Subject specific terms modeled as unobserved random variables
(random effects).

I Usually assume random effects follow N(0,σ2) distribution, σ2

unknown.

I σ2 = 0 means responses independent (not usually expected with
repeated measures).
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Exam 2 Review: Contrasting GEE and GLMM

In a repeated measures context:

I GLMM is a conditional (subject specific) approach: fixed effect β
represents effect of change in x on an individual subject’s response.

I GEE models marginal effects: β represents population average
effect of changing x.

I When σ2 large in GLMM (or responses highly correlated in GEE),
fixed effects coefficients (β’s) in conditional model (GLMM) usually
larger in magnitude than in marginal model (GEE).

I GLMM completely specifies joint distribution of responses:
likelihood methods apply.

I GEE does not assume a specific form for the distribution of
responses: not a likelihood-based method.
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Exam 2 Review: Loglinear Models
Used to study dependence structure in contingency tables.

I Multivariate analysis for contingency tables:

I All variables treated on an equal footing.

I No distinction between response and explanatory variables.

I Loglinear models are fit by treating cell frequencies as independent
Poisson responses.

E.g., for I× J× K three-way table:

I Variable X has I levels, Y has J levels, Z has K levels.

I Treat nijk, 1 6 i 6 I, 1 6 j 6 J, 1 6 k 6 K as indep. Poisson
counts.

I Fit Poisson GLM with log link on µijk, with nijk as response, and X,
Y, Z as predictors, generally with interactions.

I Software creates I− 1 dummy var.s for X, J− 1 for Y, and K− 1 for
Z.
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I Use LRT to compare nested models.

I Use X2 or G2 to test goodness-of-fit.

I Looking for simplest model that explains data adequately.

I Don’t depend only on formal tests: statistically significant terms
may be practically unimportant (see Section 7.2.8).
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Some models for I× J× K three-way table:

I (XYZ)

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk + λXYZijk

I Saturated model, fits cell counts perfectly.

I Residual df = 0.

I (XY,XZ, YZ)

log(µijk) = λ+ λXi + λYj + λZk + λXYij + λXZik + λYZjk

I homogeneous assoc (no 3-factor interaction): conditional odds-ratio
for any pair of variables is constant across levels of 3rd var.

I Residual df = (I− 1)(J− 1)(K− 1).
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I (XZ, YZ)

log(µijk) = λ+ λXi + λYj + λZk + λXZik + λYZjk

I X and Y condionally independent given Z.

I Homogeneous XZ association. Homogeneous YZ association.

I Residual df = (I− 1)(J− 1)K.

I (XY,Z)

log(µijk) = λ+ λXi + λYj + λZk + λXYij

I Z independent of X and Y.

I Residual df = (IJ− 1)(K− 1).
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Loglinear model related topics:

I Mosaic plots.

I Logit-loglinear connection.

I Independence graphs and collapsibility conditions.
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Small-Area Estimation of Binomial Proportions

Wish to estimate parameters for a large number of geographical areas
when the individual areas may have relatively few observations.

E.g., wish to estimate county-level rates of health ins. coverage from a
national or statewide survey. Most counties have few observations.

One approach:

I Fit a random effects model treating each small area as a cluster.

I Estimate (or “predict”) random effect(s) for each small area using
the mode of its (estimated) conditional distribution given the data.

I Combine with estimates of fixed effects to estimate (or “predict”)
small-area means or proportions.
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2008 Presidential Election Survey

Simulated survey of 2000 voters. For each state i (including DC):

Ti = sample size: proportional to number of actual voters

yi = number in sample favoring Obama ∼ Bin(Ti,πi)

πi = success probability: true proportion that voted for Obama

I Fixed effects model:

logit(πi) = βi, i = 1, . . . , 51

I Saturated (51 parameters for 51 binomial observations).

I MLEs are sample proportions for each state.

I Logit model with random intercept:

logit(πi) = ui + α, u1, . . . ,u51 ∼ i.i.d. N(0,σ2)

I Two parameters: α and σ2.
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2008 Presidential Election Survey (ctd)

I MLEs for random effects model: α̂ = 0.042, σ̂ = 0.344

I eα̂

1+eα̂ = 0.511, close to combined sample proportion of 0.52.

I π̂i from fitted random effects model shown on next slide.
They are closer than sample proportions to the true πi:

RMSE =

{
0.132, for sample proportions

0.085, for model estimates

RMSE is 35.4% smaller.
I How does it work?

I π̂i closer to overall proportion than pi (“shrinkage”).
π̂i varies from 0.414 (MS) to 0.635 (NY), while
pi varies from 0.167 (NE) to 1 (HI, VT).

I The difference between π̂i and pi tends to be
small when Ti is large and larger when Ti is small.
This is sensible.
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T p.true p.smpl p.hat MS 20 0.430 0.250 0.414

AK 5 0.379 0.200 0.471 MT 7 0.471 0.286 0.472

AL 29 0.387 0.379 0.450 NC 66 0.497 0.500 0.504

AR 17 0.389 0.235 0.419 ND 5 0.445 0.800 0.548

AZ 35 0.449 0.514 0.512 NE 12 0.416 0.167 0.421

CA 207 0.609 0.589 0.578 NH 11 0.541 0.364 0.475

CO 37 0.537 0.541 0.526 NJ 59 0.571 0.661 0.606

CT 25 0.606 0.640 0.565 NM 13 0.569 0.769 0.582

DC 4 0.925 0.750 0.536 NV 13 0.552 0.462 0.497

DE 6 0.619 0.667 0.534 NY 116 0.629 0.672 0.635

FL 128 0.509 0.492 0.496 OH 87 0.514 0.414 0.441

GA 60 0.469 0.367 0.419 OK 22 0.344 0.318 0.435

HI 7 0.718 1.000 0.593 OR 28 0.568 0.536 0.522

IA 23 0.539 0.565 0.533 PA 92 0.545 0.543 0.535

ID 10 0.359 0.400 0.485 RI 7 0.629 0.714 0.545

IL 84 0.618 0.655 0.613 SC 29 0.449 0.448 0.482

IN 42 0.498 0.643 0.583 SD 6 0.448 0.833 0.559

KS 19 0.415 0.421 0.478 TN 40 0.418 0.425 0.464

KY 28 0.412 0.429 0.473 TX 123 0.436 0.390 0.416

LA 30 0.399 0.500 0.506 UT 15 0.342 0.267 0.436

MA 47 0.618 0.596 0.560 VA 57 0.526 0.491 0.498

MD 40 0.619 0.575 0.545 VT 5 0.675 1.000 0.573

ME 11 0.577 0.636 0.541 WA 46 0.573 0.587 0.554

MI 76 0.573 0.579 0.558 WI 45 0.562 0.489 0.498

MN 44 0.541 0.432 0.466 WV 11 0.425 0.545 0.519

MO 45 0.492 0.444 0.473 WY 4 0.325 0.250 0.483
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Remarks

I Specific results of simulation would change if we redid it, but they
would be fairly similar.

I Method “borrows strength” from all small areas to improve
estimation.

I Typically “shrinks” towards overall average or proportion.
Shrinkage is more pronounced for areas with small sample sizes.

I Bias-variance tradeoff.

The next few slides show the R commands that we used to create the
simulated survey data, fit the random intercept model, and compute
some of the various summaries. Note the use of the extractor functions
fitted(), fixef(), and VarCorr().
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> datasite <- "http://www.stat.ufl.edu/"

> datadir <- "~presnell/Courses/sta4504-2012sp/Var/"

> datafile <- paste(datasite, datadir, "obama.txt", sep = "")

> obama <- read.table(datafile, header=TRUE)

> names(obama)

[1] "State" "T" "p.true"

> obama$y <- with(obama, rbinom(length(State), T, p.true))

> obama <- transform(obama, p.smpl = y/T)

> library(lme4)

> obama.fit <- glmer(cbind(y, T - y) ~ (1|State),

data = obama, family = binomial)

> obama$p.hat <- fitted(obama.fit)

> head(obama, 2)

State T p.true y p.smpl p.hat

1 AK 5 0.379 1 0.20000 0.47069

2 AL 29 0.387 11 0.37931 0.45014
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> summary(obama.fit)

Generalized linear mixed model fit by the Laplace approximation

Formula: cbind(y, T - y) ~ (1 | State)

Data: obama

AIC BIC logLik deviance

103 107 -49.7 99.5

Random effects:

Groups Name Variance Std.Dev.

State (Intercept) 0.118 0.344

Number of obs: 51, groups: State, 51

Fixed effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.0424 0.0731 0.58 0.56
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> (alpha <- fixef(obama.fit, drop = TRUE))

(Intercept)

0.042428

> (sigma2 <- VarCorr(obama.fit)$State[1,1])

[1] 0.11808

> (sigma <- sqrt(sigma2))

[1] 0.34362
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> (p.smpl.combined <- with(obama, sum(y)/sum(T)))

[1] 0.51952

> (rmse.p.smpl <-

with(obama, sqrt(mean((p.smpl - p.true)^2))))

[1] 0.13229

> (rmse.p.hat <-

with(obama, sqrt(mean((p.hat - p.true)^2))))

[1] 0.085448
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